Контрольная работа по дисциплине «Теория вероятностей, математическая статистика и случайные процессы». Вариант №7
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No 1
Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны? p=0,15; k=5.
Задача No 2
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K=4; L=5; M=5; N=4; P=2; R=4.
Задача No 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. K=6; P=0,8; R=4.
Задача No 4
Непрерывная случайная величина задана ее плотностью распределения
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
Исходные данные: a=0; b=3; p(x)=c+x; α=1; β=2,5; 0=0,25
Задача No 5
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО s . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
Исходные данные: σ=35
Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны? p=0,15; k=5.
Задача No 2
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K=4; L=5; M=5; N=4; P=2; R=4.
Задача No 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. K=6; P=0,8; R=4.
Задача No 4
Непрерывная случайная величина задана ее плотностью распределения
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
Исходные данные: a=0; b=3; p(x)=c+x; α=1; β=2,5; 0=0,25
Задача No 5
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО s . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
Исходные данные: σ=35
Дополнительная информация
Теория вероятности, Контрольная работа, Вариант №7, СибГУТИ, год сдачи 2012, преподаватель Разинкина Татьяна Эдуардовна
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант: 7
novg
: 13 февраля 2012
Задача 1:
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 4 белых шара и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 6 печатных ма
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант №7. СибГУТИ
sanrus72
: 24 мая 2014
Контрольная работа
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
1.Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
2.В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые
90 руб.
Другие работы
Белый город
Elfa254
: 27 сентября 2013
1)Для защиты загорья, как тогда называли новые части города, в 60-х годах 16века был насыпан земляной вал. Там, где к валу подходили улицы, строили бревен-чатые укреплённые землёй ворота. В 1586 году царь Фёдр Иванович повелел "наМоскве сделать град каменный, дать ему имя царёв Белый каменный город". Строи-тельство крепостной стены шло по уже имеющемуся земляному валу, проходившему полинии современного Бульварного кольца. Руководил строительством выдающийся зод-чий Фёдр Савельевич (пре
5 руб.
Теория вероятностей и математическая статистика. Вариант №1
kosten854
: 29 марта 2016
Вариант № 1
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть
100 руб.
Привод тяги экскаватора ЭДГ-3,2.30
VikkiROY
: 29 января 2015
Содержание.
Условия работы и требования, предъявляемые к проектируемому электроприво-ду.
Обзор и анализ систем проектируемого электропривода и структур.
систем управления им.
Расчет мощности и выбор двигателя, управляемого преобразователя.
Определение масс и линейных размеров конструктивных элементов экскавато-ра.
Определение усилия в тяговом канате и мощности двигателей тягового механизма за отдельные периоды работы экскаватора в течение одного.
Цикла.
Выбор двигателя.
Выбор тиристорного преобр
20 руб.
Курсовая работа по "Сети ЭВМ и телекоммуникации".
Eva
: 3 июня 2011
Курсовая работа по дисциплине "Сети ЭВМ и телекоммуникации".
Вариант 21.
1. Синхронизация в системах ПДС
1.1 Классификация систем синхронизации.
1.2 Поэлементная синхронизация с добавлением и вычитанием
импульсов (принцип действия).
1.3 Параметры системы синхронизации с добавлением и
вычитанием импульсов.
1.4 Расчет параметров системы синхронизации с добавлением и
вычитанием импульсов (задачи).
Задача 1:
Коэффициент нестабильности задающего генератора устройства синхронизации и передатчика К=10
200 руб.