Контрольная работа № 1 по предмету: Математический анализ. 2-й семестр. Вариант № 7
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Контрольная работа №1 по предмету Математический анализ 2 семестр 07 вариант
СибГУТИ, Дистанционное обучение.
Задача №1: Даны функция z=z(x,y), точка A(x0,y0) и вектор a(ax;ay) . Найти:
1. grad z в точке A.
2. производную в точке A по направлению вектора a.
Задача №2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах ( ).
Задача №3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, x2+y2=z x2+y2=4
Задача №4: Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть — основание пирамиды, принадлежащие плоскости ; - контур, ограничивающий ; — нормаль к , направленная вне пирамиды .
Требуется вычислить:
1. поток векторного поля через поверхность s в направлении нормали ;
2. циркуляцию векторного поля по замкнутому контуру непосредственно и применив теорему Стокса к контуру и ограниченной им поверхности с нормалью ;
3. поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
СибГУТИ, Дистанционное обучение.
Задача №1: Даны функция z=z(x,y), точка A(x0,y0) и вектор a(ax;ay) . Найти:
1. grad z в точке A.
2. производную в точке A по направлению вектора a.
Задача №2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах ( ).
Задача №3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, x2+y2=z x2+y2=4
Задача №4: Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть — основание пирамиды, принадлежащие плоскости ; - контур, ограничивающий ; — нормаль к , направленная вне пирамиды .
Требуется вычислить:
1. поток векторного поля через поверхность s в направлении нормали ;
2. циркуляцию векторного поля по замкнутому контуру непосредственно и применив теорему Стокса к контуру и ограниченной им поверхности с нормалью ;
3. поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Сдано в 2011г.
Похожие материалы
Контрольная работа №1 по предмету : Дополнительные главы математического анализа. 2-й семестр. Вариант № 7
SybNet
: 22 сентября 2012
Контрольная работа №1 по предмету Доп главы мат анализа 2 семестр 07 вариант.
СибГУТИ, Дистанционное обучение.
Задача №1: Исследовать сходимость числового ряда:
Задача №2: Найти интервал сходимости степенного ряда:
Задача №3: Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно:
Задача №4: Разложить данную функцию f(x)= в ряд Фурье: в интервале (-п;-п)
100 руб.
Контрольная работа № 1 по предмету: Математический анализ. 2-й семестр. Вариант № 2
svetakamchatka
: 5 декабря 2012
1. Даны функция , точка и вектор . Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. . Вычислить с помощью двойного интеграла в полярных координатах площадь фи-гуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (x2+y2)2=a2(4x2+y2)
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=9-y2, x2+y2=9
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совме-стно с коор
500 руб.
Контрольная работа. Математический анализ. 1-й семестр, Вариант №7
predatorkras
: 23 марта 2015
Задача 1. Найти пределы функций: Вариант 3.7
Задача 2. Найти значение производных данных функций в точке x=0: Вариант 4.7
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.Вариант 5.7
Задача 4. Найти неопределенные интегралы:
Вариант: 6.7
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант 7.7
100 руб.
Математический анализ. 1-й семестр. 1-й курс. ВАРИАНТ №7
Marazm54
: 5 декабря 2015
1. Найти пределы:
а) lim┬(x→∞) (x-2x^2+5x^4)/(2+3x^2+x^4 ); б) lim┬(x→0) (1-cos6x)/(1-cos2x); в) lim┬(x→+∞) (x-5)(ln(x-3)-lnx).
2. Найти производные dy/dxданных функций:
а) y=∛((1+x^2)/(1-x^2 )); б) y=1/2 tg^2 x+ln(cosx); в) y=arctg x/(1+√(1-x^2 )); г) x^3+y^3-3axy=0.
3. Исследовать методами дифференциального исчисления функцию y=(x^2-5)/(x-3).
Используя результаты исследования, построить её график.
4. Дана функция f(x,y)=e^(y/x). Найти все её частные производные второго порядка.
5. Найти неоп
150 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
xtrail
: 25 января 2014
Задача 1. Даны функция z=z(x,y), точка A(x ;y ) и вектор a(a ;a ).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arcsin(x^(2)/y); A(1;2), a(5;-12)
Задача 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^4=a^2*(x^2-3y^2)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0; x^2+y^2=z; x^2+y^2=4
Задача
370 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (1-й семестр)
Jack
: 29 марта 2013
Задача №1: Найти пределы функций: 3.7. (см. скрин)
Задача №2: Найти значение производных данной функции в точке x=0:
4.7. y=(x+1)ln(x+1)
Задача №3: Провести исследование функции с указанием
а) области определения точек разрыва
б) экстремумов
в) асимптот
По полученным данным построить график функции:
f(x)=(x-1)e^(3x-1)
Задача №4: Найти неопределенные интегралы: 6.7. (см.скрин)
Задача №5: Вычислить площадь областей, заключенных между линиями:
y=x-2; y=2x-x^(2)
450 руб.
Контрольная работа №1 по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
Jack
: 26 марта 2013
Задача №1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax; ay) .
Найти:
1.grad z в точке A.
2.производную в точке A по направлению вектора a.
z= arcsin (x^(2)/y); A(1;2), a(5;-12)
Задача №2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^(4)=a^(2)*(x^(2) - 3y^(2))
Задача №3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, x^(2)+y^(2)=
350 руб.
Экзамен. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость
5. Данную функцию разложить в ряд Тейлора по степеням х
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения
150 руб.
Другие работы
Теория массового обслуживания. Зачет. Задание №5.
nik200511
: 20 марта 2018
ЗАДАЧА
В цехе работают три станка, которые ломаются с интенсивностями 1, 2, 3 (в сутки) соответственно. В штате состоят два наладчика, устраняющие поломки станков с интенсивностями 1, 2 (в сутки) соответственно. Требуется построить граф этой системы массового обслуживания и найти долю времени, когда оба наладчика заняты работой.
1 2 3 1 2
0,2 0,1 0,4 0,3 0,1
44 руб.
Приспособление А6ГР.01.25.00.000 ЧЕРТЕЖ
coolns
: 1 июня 2023
Приспособление А6ГР.01.25.00.000 СБ
Приспособление А6ГР.01.25.00.000 Спецификация
Приспособление А6ГР.01.25.00.000 3d сборка
Приспособление А6ГР.01.25.00.000 чертежи
Направляющая А6ГР.01.25.00.002
Призма левая А6ГР.01.25.00.003
Призма правая А6ГР.01.25.00.004
Втулка А6ГР.01.25.00.005
Основание сварное А6ГР.01.25.01.000 Сборочный чертеж
Основание сварное А6ГР.01.25.01.000 Спецификация
Плита А6ГР.01.25.01.001
Опора правая А6ГР.01.25.01.002
Опора левая А6ГР.01.25.01.003
Все чертежи и 3d модели (вс
250 руб.
Шифрование в сетях 802.11
Paxan84
: 24 марта 2025
Контрольная работа по предмету Беспроводные технологии передачи данных.
600 руб.
Этапы развития политической философии
Lokard
: 16 ноября 2013
В поисках ответов на основополагающие вопросы мироздания вообще и самоорганизации человеческих сообществ в частности мыслители античного периода уделяли большое внимание проблемам политики, власти, государства, законности, форм государственного правления и другим. Более того, они придавали этим проблемам приоритетное значение. Например, Аристотель писал: «Если конечной целью всех наук и искусств является благо, то высшее благо есть преимущественно цель самой главной из наук и искусств, именно по
10 руб.