Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Работа зачтена в 2011г. Без замечаний
Похожие материалы
Контрольная работа по дисциплине Математический анализ. Вариант №6
wertystn
: 28 января 2019
1. Найти пределы
2. Найти производные данных функций
3. 3. Исследовать методами дифференциального исчисления функцию
70 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Nadyuha
: 15 декабря 2016
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график.
4. Дана функция. Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
200 руб.
Контрольная работа по дисциплине : Математический анализ Вариант №6
nastenakosenkovmailru
: 8 марта 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
Aleksandr1234
: 19 октября 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
50 руб.
Контрольная работа по дисциплине: «Математический анализ». Вариант №6
xtrail
: 14 января 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arctg(xy^2); A(2;3), a(4;-3)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^6=a^2(x^4-y^4)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, 4z=y^2, 2x-y=0, x+y=9
4. Даны векторное поле F=Xi+Yj+Zk и
400 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант 6
barjel
: 14 апреля 2012
кр№1 2семестр вариант 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатным
60 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
barjel
: 29 ноября 2011
СибГУТИ
математический анализ
контрольная работа №1 вариант 6
1курс 1семестр
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:Уважаемый ХХХХХХХХХХХХХХ,
существенных
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Иннокентий
: 30 сентября 2019
Описание:
Вариант №6
1. Найти область сходимости степенного ряда (см. скрин)
2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин)
3. Начертить область на комплексной плоскости по данным условиям (см. скрин)
4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин)
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
400 руб.
Другие работы
Основные вредители и болезни садовых культур
OstVER
: 11 марта 2013
К вредителям растений относятся насекомые и животные, способные причинить повреждения растению, ущерб от которых экономически целесообразно предотвратить. Повреждения причиняются различными способами, основными из которых являются питание на растениях, откладывание яиц, перенос бактериальных, вирусных и грибковых заболеваний. Повреждения проявляются в выедании отдельных органов и тканей растений, изменении их окраски, ненормальном развитии тканей, возникновении деформации органов растений и их о
5 руб.
Экономика. Предпринимательство. Его сущность и основные черты. Формы предпринимательской деятельности.
thelive4u
: 6 апреля 2015
1. Введение..............3
2. Сущность и основные черты предпринимательства....... 4
3. Формы предпринимательской деятельности..........7
4. Заключение………………………………………….……………………….11
5. Список использованной литературы……………………………………….13
250 руб.
Лабораторная работа №4 по дисциплине: Программирование. Вариант №2
Jack
: 24 августа 2014
Лабораторная работа №4
Работа с массивом структур
Создать массив структур и выполнить задание согласно своему варианту.
2. Дана информация о пяти школах. Структура имеет вид: номер школы, год, количество выпускников, число поступивших в ВУЗы. Вывести данные об общем количестве выпускников и доле поступивших в ВУЗ.
Текст программы:
Результат работы программы:
100 руб.
Теоретическая механика СамГУПС Самара 2020 Задача С1 Рисунок 9 Вариант 8
Z24
: 7 ноября 2025
Равновесие произвольной плоской системы сил (Определение реакций опор твёрдого тела)
Найти реакции опор конструкции, схема которой изображена на рис. С1.0–С1.9. Необходимые исходные данные представлены в таблице С1.
150 руб.