Лабораторная работа № 2 по дисциплине: Физика Определение удельного заряда электрона методом магнетрона
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Цель работы
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
2. Основные теоретические сведения
Магнетроном называется электровакуумное устройство, в котором движение электронов происходит во взаимно перпендикулярных электрическом и магнитном полях. Магнетрон является источником электромагнитного излучения СВЧ диапазона.
В нашей работе магнетрон представляет собой радиолампу- диод прямого накала, электродами которой являются коаксиальные цилиндры. Радиолампа помещена во внешнее магнитное поле, создаваемое соленоидом с током (рис.1).
При этом силовые линии электрического поля имеют радиальное направление, а линии магнитной индукции совпадают с осью электродов (рис.2).
Движение электрона в электромагнитном поле подчиняется второму закону Ньютона:
(1)
где r- радиус- вектор, m- масса электрона, e- абсолютная величина заряда электрона, V- скорость электрона, E- вектор напряженности электрического поля, В- вектор индукции магнитного поля.
Траектория движения заряженной частицы в электромагнитном поле существенно зависит от величины удельного заряда- отношения заряда к массе частицы. Уравнение траектории можно получить из решения уравнения (1), но даже в случае цилиндрической симметрии это уравнение не имеет решения в аналитическом виде.
Рассмотрим на качественном уровне движение электрона в цилиндрическом магнетроне. Для упрощения предположим, что электроны вылетают из катода с нулевой начальной скоростью, их движение происходит в плоскости, перпендикулярной оси электродов, а радиус катода много меньше радиуса анода.
При протекании тока в цепи накала в результате термоэлектронной эмиссии с катода в лампе образуются свободные электроны. Эмиттированные катодом электроны под действием электрического поля движутся к аноду, и в анодной цепи возникает электрический ток. Постоянный ток в обмотке соленоида создает магнитное поле, искривляющее траекторию движения электронов.
Выясним характер движения электронов в магнетроне. В электрическом поле на электрон действует сила F = eE, вынуждающая его двигаться с ускорением в направлении, противоположном вектору Е. Эта сила совершает работу, которая ид.т на изменение кинетической энергии электрона. Скорость электронов вблизи анода может быть найдена из закона сохранения энергии:
(2)
где Ua - анодное напряжение лампы.
В магнитном поле сила действует на движущийся электрон
F=-e[VB] и направлена перпендикулярно скорости электрона. Эта сила не совершает механической работы над электроном, а только изменяет направление вектора скорости и вынуждает электрон двигаться с центростремительным ускорением по окружности. В нашей модели предполагается, что V B. Применяя второй закон Ньютона, получим:
(3)
Отсюда выразим радиус окружности:
(4)
В магнетроне электрон движется в скрещенных электрическом и магнитном полях. В отсутствии магнитного поля траектории движения электронов приведены на рис. 3а. При наложении “слабого” магнитного поля траектории электронов искривляются, но все электроны долетают до анода, как показано на рис. 3б.
Увеличивая индукцию магнитного поля, можно получить ситуацию, когда электрон, двигаясь по криволинейной траектории, едва не косн.тся анода и возвратится на катод, как на рис 3в. Криволинейная траектория в этом случае напоминает окружность, радиус которой для электрона вблизи анода приблизительно равен половине радиуса анода
(5)
где значение скорости в соответствии с формулой (2) равно
(6)
Анодный ток при этом прекращается.
Таким образом, если известна индукция критического магнитного поля при определенном анодном напряжении, то из формул (5) и (6) можно рассчитать удельный заряд электрона
(7)
При дальнейшем увеличении магнитного поля электроны, двигаясь по криволинейным замкнутым траекториям, удаляются от катода на меньшие расстояния и не долетают до анода, как показано на рис. 3г.
Для определения удельного заряда электрона по формуле (7) нужно, задавая величину анодного напряжения, найти значение индукции критического магнитного поля, при котором анодный ток уменьшается до нуля. В данной работе измеряется ток соленоида. Индукция магнитного поля соленоида связана с силой тока соотношением
(8)
где N-число витков, l-длина соленоида. В результате расчетная формула для удельного заряда электрона принимает вид:
(9)
Теоретическая зависимость анодного тока от силы тока в соленоиде для идеального магнетрона приведена на рис.4 (штриховая линия). Здесь же сплошной линией изображена реальная зависимость. Пологий спад анодного тока обусловлен следующими причинами: влиянием краевых эффектов, неоднородностью магнитного поля, некоаксиальностью электродов, падением напряжения вдоль катода, разбросом по скоростям эмиттированных электронов и т.д. Разумно предположить, что критическое значение тока соответствует максимальной скорости изменения анодного тока.
Для нахождения этой величины нужно построить график зависимости производной анодного тока по току соленоида IaIc от тока соленоида
Ic
.
Максимум постороенной функции соответствует критической силе тока в соленоиде (рис.5).
3. Описание лабораторной установки
Установка состоит из магнетрона, представляющего собой соленоид с помещенной внутри радиолампой. Конструктивно анод лампы имеет форму цилиндра, вдоль оси которого расположена нить накала, являющаяся катодом.
Электрическая схема установки приведена на рис. 6.
Соленоид подключается к источнику постоянного напряжения , а ток соленоида фиксируется амперметром. Справа изображены источник напряжения и приборы, регистрирующие параметры анодной цепи.
4. Задание
1. Подайте на лампу анодное напряжение. Запишите его величину в лабораторный журнал. Запишите значение анодного тока.
2. Изменяя силу тока в соленоиде, снимите зависимость анодного тока от тока соленоида. Данные занесите в таблицу.
3. По данным таблицы постройте зависимость анодного тока от тока соленоида.
4. Графически продифференцируйте эту зависимость. Определите критическое значение тока соленоида.
5. По формуле (9) рассчитайте величину удельного заряда электрона. Длина соленоида 10см, число витков 1500, радиус анода лампы равен 5мм.
6. Сделайте выводы по выполненной работе.
5. Контрольные вопросы
1. Что такое магнетрон и как он работает?
2. Изобразите направление электрического и магнитного полей в магнетроне и траектории движения электронов.
3. Какие силы действуют на электрон в магнетроне? Укажите направление сил, действующих на электрон в магнетроне. Запишите второй закон Ньютона для электрона в магнетроне.
4. Сделайте вывод рабочей формулы.
5. Какие графики нужно построить в данной работе? Поясните ход экспериментальных кривых.
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
2. Основные теоретические сведения
Магнетроном называется электровакуумное устройство, в котором движение электронов происходит во взаимно перпендикулярных электрическом и магнитном полях. Магнетрон является источником электромагнитного излучения СВЧ диапазона.
В нашей работе магнетрон представляет собой радиолампу- диод прямого накала, электродами которой являются коаксиальные цилиндры. Радиолампа помещена во внешнее магнитное поле, создаваемое соленоидом с током (рис.1).
При этом силовые линии электрического поля имеют радиальное направление, а линии магнитной индукции совпадают с осью электродов (рис.2).
Движение электрона в электромагнитном поле подчиняется второму закону Ньютона:
(1)
где r- радиус- вектор, m- масса электрона, e- абсолютная величина заряда электрона, V- скорость электрона, E- вектор напряженности электрического поля, В- вектор индукции магнитного поля.
Траектория движения заряженной частицы в электромагнитном поле существенно зависит от величины удельного заряда- отношения заряда к массе частицы. Уравнение траектории можно получить из решения уравнения (1), но даже в случае цилиндрической симметрии это уравнение не имеет решения в аналитическом виде.
Рассмотрим на качественном уровне движение электрона в цилиндрическом магнетроне. Для упрощения предположим, что электроны вылетают из катода с нулевой начальной скоростью, их движение происходит в плоскости, перпендикулярной оси электродов, а радиус катода много меньше радиуса анода.
При протекании тока в цепи накала в результате термоэлектронной эмиссии с катода в лампе образуются свободные электроны. Эмиттированные катодом электроны под действием электрического поля движутся к аноду, и в анодной цепи возникает электрический ток. Постоянный ток в обмотке соленоида создает магнитное поле, искривляющее траекторию движения электронов.
Выясним характер движения электронов в магнетроне. В электрическом поле на электрон действует сила F = eE, вынуждающая его двигаться с ускорением в направлении, противоположном вектору Е. Эта сила совершает работу, которая ид.т на изменение кинетической энергии электрона. Скорость электронов вблизи анода может быть найдена из закона сохранения энергии:
(2)
где Ua - анодное напряжение лампы.
В магнитном поле сила действует на движущийся электрон
F=-e[VB] и направлена перпендикулярно скорости электрона. Эта сила не совершает механической работы над электроном, а только изменяет направление вектора скорости и вынуждает электрон двигаться с центростремительным ускорением по окружности. В нашей модели предполагается, что V B. Применяя второй закон Ньютона, получим:
(3)
Отсюда выразим радиус окружности:
(4)
В магнетроне электрон движется в скрещенных электрическом и магнитном полях. В отсутствии магнитного поля траектории движения электронов приведены на рис. 3а. При наложении “слабого” магнитного поля траектории электронов искривляются, но все электроны долетают до анода, как показано на рис. 3б.
Увеличивая индукцию магнитного поля, можно получить ситуацию, когда электрон, двигаясь по криволинейной траектории, едва не косн.тся анода и возвратится на катод, как на рис 3в. Криволинейная траектория в этом случае напоминает окружность, радиус которой для электрона вблизи анода приблизительно равен половине радиуса анода
(5)
где значение скорости в соответствии с формулой (2) равно
(6)
Анодный ток при этом прекращается.
Таким образом, если известна индукция критического магнитного поля при определенном анодном напряжении, то из формул (5) и (6) можно рассчитать удельный заряд электрона
(7)
При дальнейшем увеличении магнитного поля электроны, двигаясь по криволинейным замкнутым траекториям, удаляются от катода на меньшие расстояния и не долетают до анода, как показано на рис. 3г.
Для определения удельного заряда электрона по формуле (7) нужно, задавая величину анодного напряжения, найти значение индукции критического магнитного поля, при котором анодный ток уменьшается до нуля. В данной работе измеряется ток соленоида. Индукция магнитного поля соленоида связана с силой тока соотношением
(8)
где N-число витков, l-длина соленоида. В результате расчетная формула для удельного заряда электрона принимает вид:
(9)
Теоретическая зависимость анодного тока от силы тока в соленоиде для идеального магнетрона приведена на рис.4 (штриховая линия). Здесь же сплошной линией изображена реальная зависимость. Пологий спад анодного тока обусловлен следующими причинами: влиянием краевых эффектов, неоднородностью магнитного поля, некоаксиальностью электродов, падением напряжения вдоль катода, разбросом по скоростям эмиттированных электронов и т.д. Разумно предположить, что критическое значение тока соответствует максимальной скорости изменения анодного тока.
Для нахождения этой величины нужно построить график зависимости производной анодного тока по току соленоида IaIc от тока соленоида
Ic
.
Максимум постороенной функции соответствует критической силе тока в соленоиде (рис.5).
3. Описание лабораторной установки
Установка состоит из магнетрона, представляющего собой соленоид с помещенной внутри радиолампой. Конструктивно анод лампы имеет форму цилиндра, вдоль оси которого расположена нить накала, являющаяся катодом.
Электрическая схема установки приведена на рис. 6.
Соленоид подключается к источнику постоянного напряжения , а ток соленоида фиксируется амперметром. Справа изображены источник напряжения и приборы, регистрирующие параметры анодной цепи.
4. Задание
1. Подайте на лампу анодное напряжение. Запишите его величину в лабораторный журнал. Запишите значение анодного тока.
2. Изменяя силу тока в соленоиде, снимите зависимость анодного тока от тока соленоида. Данные занесите в таблицу.
3. По данным таблицы постройте зависимость анодного тока от тока соленоида.
4. Графически продифференцируйте эту зависимость. Определите критическое значение тока соленоида.
5. По формуле (9) рассчитайте величину удельного заряда электрона. Длина соленоида 10см, число витков 1500, радиус анода лампы равен 5мм.
6. Сделайте выводы по выполненной работе.
5. Контрольные вопросы
1. Что такое магнетрон и как он работает?
2. Изобразите направление электрического и магнитного полей в магнетроне и траектории движения электронов.
3. Какие силы действуют на электрон в магнетроне? Укажите направление сил, действующих на электрон в магнетроне. Запишите второй закон Ньютона для электрона в магнетроне.
4. Сделайте вывод рабочей формулы.
5. Какие графики нужно построить в данной работе? Поясните ход экспериментальных кривых.
Дополнительная информация
2012. Зачет.
Похожие материалы
Физика. Определение удельного заряда электрона методом магнетрона
Gila
: 2 января 2018
Определение удельного заряда электрона методом магнетрона.
1. Ознакомиться с законами движения заряженных частиц в электрическом и магнитном полях.
2. Измерить удельный заряд электрона с помощью цилиндрического магнетрона.
185 руб.
Лабораторная работа № 2 По дисциплине: Физика Определение удельного заряда электрона методом магнетрона
odja
: 26 января 2012
Цель работы
Исследовать электростатическое поле, графически изобразить сечение эквипотенциальных поверхностей и силовые линии для некоторых конфигураций поля.
Вывод:
Исследовано электростатическое поле, созданное двумя электродами: два тонких кольца в первой ванне; отрицательно заряженная плоскость и положительно заряженное кольцо для второй ванны. Графиче.......
Контрольные вопросы
Вопрос 1. Дайте определение электростатического поля и его характеристик.
Ответ: Электрическое поле, созданное сис
59 руб.
Лабораторная работа по физике “Определение удельного заряда электрона методом магнетрона”
ChrisTref
: 19 сентября 2009
Лабораторная работа по физике № 2 (работа 4.1), вариант 6.
По теме: “Определение удельного заряда электрона методом магнетрона”
Цель работы:
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
Контрольные вопросы:
Вопрос 1. Что такое магнетрон и как он работает?
Вопрос 2. Изобразите направление электрического и магнитного полей в магнетроне и траектории движения электронов.
Вопрос 3. Ка
300 руб.
Лабораторная работа № 2 по дисциплине «Физика» Определение удельного заряда электрона методом магнетрона ВАРИАНТ 7
foma124yandexru
: 14 января 2019
ВАРИАНТ 7
U-19
ЦЕЛЬ РАБОТЫ:
1. Ознакомиться с законами движения заряженных частиц в электрическом и магнитном полях.
2. Определить удельный заряд электрона с помощью цилиндрического магнетрона.
КОНТРОЛЬНЫЕ ВОПРОСЫ:
1. Опишите действие электрических сил на электрон в магнетроне.
2. Опишите действие магнитных сил на электроны в магнетроне.
3. Изобразите направление электрического и магнитного полей в магнетроне в случае движения электронов по траекториям, изображенным на рис.5
4. Запишите второ
180 руб.
Лабораторная работа №2 по дисциплине: физика Определение удельного заряда электрона методом магнетрона. Вариант 9
СибирскийГУТИ
: 4 марта 2014
Работа 4.1
1. Цель работы
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
4. Задание
1. Подайте на лампу анодное напряжение. Запишите его величину в лабораторный журнал. Запишите значение анодного тока.
2. Изменяя силу тока в соленоиде, снимите зависимость анодного тока от тока соленоида. Данные занесите в таблицу.
3. По данным таблицы постройте зависимость анодного тока от тока сол
50 руб.
Лабораторная работа №2 по дисциплине: физика Определение удельного заряда электрона методом магнетрона. Вариант 9
ДО Сибгути
: 3 февраля 2014
Работа 4.1
1. Цель работы
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
2. Основные теоретические сведения
3. Описание лабораторной установки
4. Задание
1. Подайте на лампу анодное напряжение. Запишите его величину в лабораторный журнал. Запишите значение анодного тока.
2. Изменяя силу тока в соленоиде, снимите зависимость анодного тока от тока соленоида. Данные занесите в таблицу
40 руб.
Лабораторная работа №2 по дисциплине: Физика "Определение удельного заряда электрона методом магнетрона" Вариант 8
rawsik
: 8 апреля 2012
Вариант 8
Семестр 1
Работа приведена со всеми замечаниями, работа зачтена
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
50 руб.
Лабораторная работа № 2 по дисциплине: Физика Определение удельного заряда электрона методом магнетрона. 1-й семестр
Студенткааа
: 22 апреля 2013
1.Цель работы
Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
2.Основные теоретические сведения
3. Описание лабораторной установки
4. Задание
5. Контрольные вопросы
1. Что такое магнетрон и как он работает?
2. Изобразите направление электрического и магнитного полей в магнетроне и траектории движения электронов.
3. Какие силы действуют на электрон в магнетроне? Укажите направление сил
200 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.