Контрольная работа + экзаменационная работа + лабораторные работы по дисциплине: Теория сложностей вычислительных процессов и структур, вариант 8

Цена:
500 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon
material.view.file_icon lab01.cpp
material.view.file_icon lab01_result.txt
material.view.file_icon Лабораторная работа №1.doc
material.view.file_icon
material.view.file_icon lab02.cpp
material.view.file_icon Лабораторная работа №2.doc
material.view.file_icon
material.view.file_icon lab03.cpp
material.view.file_icon Лабораторная работа №3.doc
material.view.file_icon
material.view.file_icon lab04.cpp
material.view.file_icon Лабораторная работа №4.doc
material.view.file_icon
material.view.file_icon lab05.cpp
material.view.file_icon Задачи о рюкзаке_LBRT_k5_lec2.pdf
material.view.file_icon Лабораторная работа №5.doc
material.view.file_icon wgraph.jpg
material.view.file_icon _algorithms_graphs.pdf
material.view.file_icon
material.view.file_icon kr.cpp
material.view.file_icon Контрольная работа.doc
material.view.file_icon
material.view.file_icon
material.view.file_icon test_1.cpp
material.view.file_icon test_2.cpp
material.view.file_icon Экзаменационная работа.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word
  • Adobe Acrobat Reader
  • Программа для просмотра изображений

Описание

Лабораторные работы №1-5.
№1: Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
№2: Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа,
имеющего 7 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
№3: Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0).
Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
№4: Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
№5: Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi.
Написать программу, которая методом динамического программирования формирует такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной. На экран вывести промежуточные вычисления, сформированный набор, его стоимость и массу.

Контрольная работа:
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Вариант 8.

Экзамен (билет №8):
№1:С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
№2: Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.

Дополнительная информация

Все сдано на отлично
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 8.
Задача о перемножении матриц. Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант №8 М1[4x8], M2[8x4], M3[4x7], М4[7x2], M5[2x6], M6[6x3], M7[3x5], M8[5x9].
User zhekaersh : 6 марта 2015
70 руб.
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант № 8
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант 8 М1[4x8], M2[8x4], M3[4x7], М4[7x2], M5[2x6], M6[6x3], M7[3x5], M8[5x9]
User rt : 24 февраля 2015
70 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Контрольная работа по дисциплине: Теория сложности вычислительных процессов и структур. Вариант 8
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
500 руб.
promo
Контрольная работа по дисциплине “Теория сложности вычислительных процессов и структур”. Вариант №8
Контрольная работа 1 - Зачет. Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц...
User Daniil2001 : 14 ноября 2023
75 руб.
Контрольная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
Контрольная работа по дисциплине: «Теория сложности вычислительных процессов и структур» Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и
User IT-STUDHELP : 5 декабря 2022
480 руб.
promo
Инженерная графика. Упражнение №45. Вариант №3Б
Все выполнено в программе КОМПАС 3D v16. Миронов Б.Г., Миронова Р.С., Пяткина Д.А., Пузиков А.А. - Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере. Упражнение №45. Вариант №3Б. Задание: Перечертить два вида деталей. Выполнить указанный разрез. Проставить размеры. В состав работы входят 3 файла: - 3D модель детали; - ассоциативный чертеж; - обычный чертеж. Помогу с другими вариантами, пишите в ЛС.
User Чертежи : 9 декабря 2019
60 руб.
Инженерная графика. Упражнение №45. Вариант №3Б
Лабораторная работа № 2 по дисциплине «Цифровые системы коммутации и их программное обеспечение»
" Изучение пространственной коммутации цифровых сигналов. Построение КП EWSD" 1. Цель работы 1.1. Изучение принципов пространственной коммутации. 1.2. Изучение принципов построения коммутационных полей с использованием пространственную коммутацию. 1.3. Изучение коммутационных полей ЦСК EWSD, AXE. 1.4. Моделирование с помощью персональной ЭВМ пространственную коммутацию, а также построение коммутационных полей типа “В-П-В”.
User ldthm23 : 28 февраля 2013
500 руб.
Лабораторная работа №5. Схемотехника. Компаратор. 2020
Лабораторная работа №5. Схемотехника. Компаратор .2020 Техническое задание Изучить принципы функционирования и проектирования цифровых компараторов (схем сравнения), научится программировать функциональные особенности схем в Active-HDL, проводить моделирование работы микросхем. Теоретическая часть 1. Описание схемы Схемы компараторов предназначены для реализации логических условий, которые сравнивают два поступающих числа в микропрограммах, и выводит цифровой сигнал, указывающий на увеличени
User DiKey : 4 июля 2022
200 руб.
Лабораторная работа №5. Схемотехника. Компаратор. 2020
Лабораторная работа №1 по дисциплине: Физика (часть 1-я). Тема: «Изучение характеристик электростатического поля». Вариант № 6
Лабораторная работа № 1 «Изучение характеристик электростатического поля» Исходные данные: Вариант 6 Координаты первой точки: x=5 см, y=10 см; Координаты второй точки: x=10 см, y=10 см; Координаты третьей точки: x=15 см, y=10 см. Цель работы: 1. Изобразить графически сечение эквипотенциальных поверхностей электростатического поля, созданного заданной конфигурацией электрических зарядов 2. Используя изображение эквипотенциальных поверхностей, построить силовые линии электростатического поля зад
User IT-STUDHELP : 23 января 2017
290 руб.
promo
up Наверх