Дискретная математика. Контрольная работа №1 - Вариант №4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) È (C\B) = (AÈ C) \ B б) A ́ (BÇ C)=(A ́ B)Ç (A ́ C).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,2),(b,4),(c,3),(c,2)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í R2, P = {(x,y) | x2 + x = y2 + y}.
No4 Доказать утверждение методом математической индукции:
(10n – 1) кратно 9 для всех целых n 3 0.
No5 Восемь студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
Задачи: Решены все с 1 по 10 (Вариант 4)
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,2),(b,4),(c,3),(c,2)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í R2, P = {(x,y) | x2 + x = y2 + y}.
No4 Доказать утверждение методом математической индукции:
(10n – 1) кратно 9 для всех целых n 3 0.
No5 Восемь студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
Задачи: Решены все с 1 по 10 (Вариант 4)
Дополнительная информация
Год сдачи: 2012
Оценка: Отлично
Вариант №4
Оценка: Отлично
Вариант №4
Похожие материалы
Контрольная работа № 1 по дисциплине: «Дискретная математика». Вариант №4
ДО Сибгути
: 22 марта 2016
Задача №1
Задано универсальное множество и множества. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {2,4,6,8,10},
A = {2,4}, , , .
а) ; б) ; в) ; г) ; д) .
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
Задача №3
Для булевой функции найти методом
150 руб.
Контрольная работа №1 по дискретной математике
a-cool-a
: 4 мая 2012
Задание 1.
Для графа G=(X,U) ( рисунок 1) выполнить следующее:
1.1. Построить:
- матрицу смежности;
- матрицу инциденций.
1.2. Определить степени для всех вершин {xi} данного графа.
(Указать каким способом вычисляли S(xi)).
1.3. а). Подсчитать количество маршрутов длиной в графе G=(X,U).
б). Построить все длиной , связывающие вершины хi и хk ( помечены * ).'
Маршруты записать в форме: =( хi ,... хt ,..., хk), где p номер маршрута.
Примечание. Для выполнения п.1.3а) составить про
100 руб.
СибГУТИ | Дискретная математика | 3 семестр| | Контрольная работа №1 | Вариант № 4
Arsikk
: 4 марта 2015
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 16.02.2015
Рецензия:Уважаемый,
все верно.
Мурзина Татьяна Степановна
100 руб.
Дискретная математика вариант 4
BOND
: 10 октября 2009
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
100 руб.
Контрольная работа №1 по дисциплине «Дискретная математика»
Anza
: 8 июля 2019
Вариант 13
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) б) (А ́В)È(В ́А)=(С ́D) Þ A=B=C=D.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекс
500 руб.
Контрольная работа №1 по дисциплине: «Дискретная математика»
kas5360
: 26 ноября 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) ; б) ; в) ; г) ; д) .
100 руб.
Дискретная математика. Конт.работа. Вариант №4
krakadil
: 6 октября 2014
Задача 1. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача 2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
Задача 3. Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему
Задача 4. Орграф задан своей матрицей смежн
100 руб.
Контрольная работа 1 Дискретная математика Вариант 6
SOKOLOV
: 27 октября 2024
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли о
322 руб.
Другие работы
Теплотехника 5 задач Задача 2 Вариант 97
Z24
: 3 января 2026
Определить индикаторную Ni и эффективную Ne мощность четырехтактного двигателя внутреннего сгорания по его конструктивным параметрам и среднему индикаторному давлению рi. Диаметр цилиндра двигателя D, ход поршня S, угловая скорость коленчатого вала Ω, мин-1, число цилиндров Z, среднее индикаторное давление рi и механический КПД ηм выбрать из табл. 2.
Ответить на вопросы:
Каковы основные различия в работе двухтактного и четырехтактного двигателей внутреннего сгорания?
Каковы преимущества и
200 руб.
Теория вероятностей и математическая статистика Вариант 4 Контрольная работа
SwissW
: 30 мая 2023
Задание 1. Комбинаторика
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Задание 2. Основные теоремы
В автопарке имеются автомобили двух марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки - с вероятностью 0,7. Найти вероятность того, что произвольный автомобиль автопарка исправен.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядом распределени
170 руб.
Гидравлика и теплотехника ТОГУ Термодинамика Задача 4 Вариант 6
Z24
: 18 января 2026
Найти объемный состав смеси идеальных газов, заданный массовыми долями (см. задачу №2). Определить также парциальные давления компонентов смеси, если абсолютное давление смеси р.
150 руб.
Теория электрических цепей. (2 часть)Экзамен. Билет № 10
Gila
: 17 января 2019
1. Дискретные сигналы и их спектры
2. 1. Задача.
Задан график зависимости H(f) фильтра.
215 руб.