Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант № 1
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
Дополнительная информация
Оценка - отлично!
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа № 2 по дисциплине: «Математический анализ». Вариант: №1
Игуана
: 22 марта 2012
Вычертить область плоскости по данным условиям:
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
При помощи вычетов вычислить данный интеграл по контуру.
Все с чертежами.
135 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ Вариант №1. 1 семестр
Teuserer
: 17 февраля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями обра
150 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1 (2-й семестр)
Jack
: 19 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=x^2+xy+y^2; A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^3=a^2x^2y^2
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, z=x, y=0, y=4, x=корень(25-y^2)
4. Даны векторное пол
340 руб.
Контрольная работа № 2 по дисциплине: Математический анализ. Вариант №1. 2-й семестр
Nicola90
: 10 марта 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями обра
90 руб.
Контрольная работа №2 по дисциплине: Дополнительные главы математического анализа. Вариант 1. СИБГУТИ. ДО
dubhe
: 8 марта 2015
Контрольная работа №2 По дисциплине: Дополнительные главы математического анализа. Вариант 1. СИБГУТИ. ДО
Вариант 1
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
150 руб.
Другие работы
Контрольная работа Теория вероятности и математическая статистика
ReDe
: 8 ноября 2017
Вариант работы - 2
Задания:
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи.
2. Изделие, изготовленное на первом станке, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,02, для третьего – 0,025. Четверть всех изделий изготовлены первым станком, половина – вторым, остальные – третьим. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено вторым станком?
3. Известно, что в средн
70 руб.
Планирование и управление информационной безопасностью
JonFree
: 18 декабря 2022
контрольная
вариант 1
оценка зачет
2021
400 руб.
Онлайн Тест 1 по дисциплине: Высшая математика (часть 1).
IT-STUDHELP
: 29 марта 2023
Вопрос №1
Вопрос №2
Найдите длину дуги кривой при .
(ответ округлите до сотых)
1
1,05
0,52
0,74
Вопрос №3
Если система линейных уравнений имеет единственное решение, то она называется…
совместная
определённая
несовместная
неопределённая
однородная
неоднородная
Вопрос №4
Найдите среднее значение функции на промежутке .
1
2
3
6
Вопрос №5
Вычислите скалярное произведение векторов и
1
-39
-21
28
Вопрос №6
Из перечисленных ниже, укажите функции, убывающие на интервал
750 руб.
Рабинович Сборник задач по технической термодинамике Задача 125
Z24
: 30 ноября 2025
Первая в мире атомная электростанция, построенная в СССР, превращает атомную энергию, выделяющуюся при реакциях цепного деления ядер урана, в тепловую, а затем в электрическую энергию. Тепловая мощность реактора атомной электростанции равна 30000 кВт, а электрическая мощность электростанции составляет при этом 5000 кВт.
Найти суточный расход урана, если выработка электроэнергии за сутки составила 120000 кВт·ч. Теплоту сгорания урана принять равной 22,9·106 кВт·ч/кг. Определить также, какое ко
150 руб.