Математический анализ. Контрольная работа (2-й сем). Вариант № 7
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Математический анализ. Контрольная работа (2 сем).
Вариант №7
1. Даны функция z=arcsin(x^2/y), точка A(1,2) и вектор a(5,-12)
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
Вариант №7
1. Даны функция z=arcsin(x^2/y), точка A(1,2) и вектор a(5,-12)
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
Дополнительная информация
Агульник Ольга Николаевна
Дата - 16.02.2013
Дата - 16.02.2013
Похожие материалы
Математический анализ (1-й сем.) Контрольная работа. вариант № 10
IvanDivan
: 9 февраля 2015
Задача 1. Найти пределы функций:
Вариант 3.10
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант 4.10
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант 5.10
Задача 4. Найти неопределенные интегралы:
Вариант 6.10
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант 7.10
125 руб.
Математический анализ. Контрольная работа №1 Вариант: №04, 1-й сем.
Vasay2010
: 29 апреля 2015
Задача 1. a) Найти предел функций lim((3x^4-x^2+6)/(2x^4-x+2)) . b) Найти предел функций lim((5x)/arctgx)
c) Найти предел функций lim(1+2x)^1/x
Задача 2. Найти значение производной данной функций в точке x=0, y=2^x *sin2x
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций f(x)=4x(4+x^2)
И т.д.
48 руб.
Математический анализ (2-й сем.) Контрольная работа №1. Вариант №6
SumarokovAN
: 14 апреля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями
120 руб.
Математический анализ. Контрольная работа №1 Вариант: № 6, 1-й сем.
Vasay2010
: 14 января 2013
Задача 1. a) Найти предел функций lim((2-6x+5x^2)/(x^2+x-2)) . b) Найти предел функций lim((x^2ctgx)/sinx)
c) Найти предел функций lim(2x(ln(x+2)-lnx))
Задача 2. Найти значение производной данной функций в точке x=0, y=(5-x)/(tgx+1)
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций f(x)=ln(x^2-4)
И т.д.
48 руб.
Математика (1-й сем). Математический анализ. Контрольная работа №1. Вариант №2
uberdeal789
: 30 марта 2015
Задача 1. Найти пределы функций:
3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
4.2.
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
5.2.
Задача 4. Найти неопределенные интегралы:
6.2.
Задача 5. Вычислить площади областей, заключённых между линиями:
7.2. y=1-x; y=x2-4x+3.
50 руб.
Контрольная работа №1 по дисциплине: Математический анализ. Вариант: №1, 1-й сем.
sls089
: 12 июня 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
100 руб.
Математический анализ, Контрольная работа, Вариант №7
Галина7
: 12 мая 2015
Контрольная работа
По дисциплине: «Математический анализ»
Вариант No7
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arcsin〖x^2/y〗;A(1;2),a(5;-12)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^4=a^2×(x^2-3y^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверх
70 руб.
Математический анализ. Контрольная работа. Вариант №7
Сергейds
: 28 июля 2013
Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры,
ограниченной кривой,
заданной уравнением в декартовых координатах (a>0).
Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть — основание пирамиды, принадлежащие плоскости ; - контур, ограничивающий ; — нормаль к , направ
49 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.