Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
4. Исследовать сходимость числового ряда (см.скрин)
5. Найти интервал сходимости степенного ряда (см.скрин)
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно. (см.скрин)
7. Разложить данную функцию f(x) в ряд Фурье
f(x)=x^(2)+1 в интервале (-2;2)
8. Найти общее решение дифференциального уравнения.
(1+x^(2))*y'-2xy=(1+x^(2))^(2)
9. Найти частное решение дифференциального уравнения y''+py'+qy=f(x) , удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
y''-6y'+9y=x^(2)-x+3, y(0)=4/3; y'(0)=1/27
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
4. Исследовать сходимость числового ряда (см.скрин)
5. Найти интервал сходимости степенного ряда (см.скрин)
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно. (см.скрин)
7. Разложить данную функцию f(x) в ряд Фурье
f(x)=x^(2)+1 в интервале (-2;2)
8. Найти общее решение дифференциального уравнения.
(1+x^(2))*y'-2xy=(1+x^(2))^(2)
9. Найти частное решение дифференциального уравнения y''+py'+qy=f(x) , удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
y''-6y'+9y=x^(2)-x+3, y(0)=4/3; y'(0)=1/27
Дополнительная информация
Оценка - отлично!
Похожие материалы
Контрольная работа №2 по дисциплине: Дополнительные главы математического анализа. Вариант №2.
freelancer
: 7 августа 2016
1. Вычертить область плоскости по данным условиям:
.
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
50 руб.
Контрольная работа №2 по дисциплине: Специальные главы математического анализа. Вариант №2
Jack
: 24 августа 2014
1. Вычертить область плоскости по данным условиям: (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
300 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
ДО Сибгути
: 14 февраля 2016
Задача No1
Дано:
Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , .
Задача No2
Дано:
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если .
Задача No3
Дано:
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , .
Задача No4
Дано:
Даны векторное поле и плоскость , которая со
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
ДО Сибгути
: 10 февраля 2016
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ вариант 3
vereney
: 9 марта 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной р
50 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.