Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
Дополнительная информация
Сдал на отлично!
ПОВТиАС
ПОВТиАС
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
selkup
: 16 марта 2017
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
250 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
freelancer
: 25 августа 2016
Билет №12 (РЕШЕНИЕ)
1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор
80 руб.
Теория сложностей вычислительных процессов и структур. Билет №12
IT-STUDHELP
: 7 июня 2020
Билет No12
С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
450 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
uberdeal789
: 23 мая 2015
Билет №12. (Все задачи решаются «вручную»)
1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
{0 0 34 7 0}
и тд..
2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
50 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
MayaMy
: 23 февраля 2019
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1)
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 19.01.2019
Рецензия:Уважаемая ,
замечаний нет.
Галкина Марина Юрьевна
300 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Учеба "Под ключ"
: 25 января 2026
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0
500 руб.
Другие работы
Задание 17. Вариант 25 - Следы прямой
Чертежи по сборнику Боголюбова 2007
: 5 октября 2024
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007.
Задание 17. Вариант 25 - Следы прямой.
По заданным координатам концов отрезка АВ построить его наглядное изображение и комплексный чертеж. Найти следы М и N прямой.
В состав выполненной работы входят 2 файла:
1. Чертеж формата А4, выпо
70 руб.
Схема размещения вспомагательного оборудования на резервуарах-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 15 мая 2016
Схема размещения вспомагательного оборудования на резервуарах-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
200 руб.
Контрольная работа по дисциплине: Основы надежности средств связи. Вариант №17
IT-STUDHELP
: 12 июня 2023
Контрольная работа
Вариант No17
Задача No1
Провести анализ сети, структура которой представлена на рис. 1:
а) построить дерево всех возможных простых путей от узла коммутации УКi ко всем другим узлам сети, используя графический способ;
б) выделить пути ранга r не более трех в дереве путей для заданной в таблице 1 пары узлов УКi и УКj;
в) найти структурную матрицу сети;
г) используя структурную матрицу, определить пути ранга r не более 3 от узла УКi до узла УКj матричным способом и сравнить полу
580 руб.
Экспертиза качества и оценка конкурентоспособности макаронных изделий
evelin
: 11 октября 2013
Содержание
Введение
1. Теоретические основы экспертизы качества и оценки конкурентоспособности макаронных изделий
1.1 Рынок макаронных изделий
1.2 Факторы, влияющие на ассортимент и качество макаронных изделий
1.3 Характеристика современного ассортимента макаронных изделий
1.4 Современные требования к качеству и хранению макаронных изделий
1.5 Современные направления по расширению ассортимента и улучшению качества макаронных изделий
2. Практические основы экспертизы качества и оценка
ко
5 руб.