Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12

Состав работы

material.view.file_icon 05AB70D4-4586-4F0C-A352-06B174E99765.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1  8 22 26
2  4 11 
3  14 40

Дополнительная информация

Сдал на отлично!
ПОВТиАС
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 0 5 2 7) (6 0 4 1 3 2) (0 4 0 7 4 3) (5 1 7 0 6 1) (2 3 4 6 0 0) (7 2 3 1 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
User Roma967 : 21 мая 2025
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12 promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
User selkup : 16 марта 2017
250 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Билет №12 (РЕШЕНИЕ) 1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор
User freelancer : 25 августа 2016
80 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Теория сложностей вычислительных процессов и структур. Билет №12
Билет No12 С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0)) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
User IT-STUDHELP : 7 июня 2020
450 руб.
Теория сложностей вычислительных процессов и структур. Билет №12 promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Билет №12. (Все задачи решаются «вручную») 1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. {0 0 34 7 0} и тд.. 2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
User uberdeal789 : 23 мая 2015
50 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Уважаемый студент, дистанционного обучения, Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1) Вид работы: Экзамен Оценка:Отлично Дата оценки: 19.01.2019 Рецензия:Уважаемая , замечаний нет. Галкина Марина Юрьевна
User MayaMy : 23 февраля 2019
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0 2)
400 руб.
promo
Контрольная работа по дисциплине "Дискретная Математика". 10 вариант, СибГУТИ
No1 Проиллюстрировать равенство при помощи диаграмм Эйлера-Венна. (A\B)  (AC) = A\(B\C). No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,
User BarneyL : 16 мая 2018
200 руб.
Контрольная работа по дисциплине "Дискретная Математика". 10 вариант, СибГУТИ
Имитационное моделирование в анализе рисков инвестиционного проекта
Введение 1. Место метода Монте-Карло в количественном анализе рисков инвестиционного проекта 2. Схема реализации метода Монте-Карло в инвестиционных расчетах 2.1. Построение математической модели 2.2. Осуществление имитации 2.3. Анализ результатов Заключение Список использованной литературы Введение Одним из методов, позволяющих учитывать влияние неопределенности на эффективность инвестиционного проекта является имитационное моделирование по методу Монте-Карло, которое можно отнести к группе те
User Lokard : 25 октября 2013
15 руб.
Лабораторная работа №3 по дисциплине "Алгоритмы и структуры данных" (вариант 6)
Тема: Бинарные деревья Цель работы: изучить понятие и способы описания бинарных деревьев и освоить их приемы программирования алгоритмов их обработки. Задание 1. На основе материалов конспекта лекций (раздел 5) и рекомендуемой литературы изучить теоретический материал по программированию бинарных деревьев. 2. Сформировать дерево (деревья) двоичного поиска и вывести его (их) на экран. 3. Выполнить обработку данных на этом бинарном дереве (табл. 3, задание 1) и вывести обработанное дерево на экран
User Greenberg : 28 августа 2020
140 руб.
Инженерная графика. Задание №70. Вариант №11. Соединение шпилечное
Все выполнено в программе КОМПАС 3D v16. Боголюбов С.К. Индивидуальные задания по курсу черчения. Задание 70. Вариант 11. Соединение шпилечное. Пользуясь приведёнными условными соотношениями, построить изображения соединения деталей шпилькой. Размер L подобрать по ГОСТ 22032-76 (замена ГОСТа 11765-66) так, чтобы обеспечить указанное значение К. В состав работы входит один файл – чертеж шпилечного соединения соответствующего варианта с расчётами и используемыми стандартными изделиями на черте
User Чертежи : 28 марта 2020
65 руб.
Инженерная графика. Задание №70. Вариант №11. Соединение шпилечное
up Наверх