Теория сложностей вычислительных процессов и структур (БИЛЕТ №13)
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
1. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
1. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
Дополнительная информация
СибГУТИ, преподователь: Галкина Марина Юрьевна, оценка: отлично
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
DArt
: 12 апреля 2022
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
70 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №13
sun525
: 10 ноября 2014
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
0 2 0 0 0
2 0 5 3 4
0 5 0 0 2
0 3 0 0 4
0 4 2 4 0
2.Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №13
IT-STUDHELP
: 19 апреля 2019
Билет No13
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×8],M4[8×4],M5[4×7]
200 руб.
Экзаменационный билет № 13 по дисциплине Теория сложности вычислительных процессов и структур
Некто
: 16 сентября 2018
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2.Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
100 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №13
Amor
: 27 октября 2013
Билет 13.
Задание 1.
Дано: неориентированный граф, заданный матрицей весов рёбер.
0 2 0 0 0
2 0 5 3 4
0 5 0 0 2
0 3 0 0 4
0 4 2 4 0
Найти: минимальное остовное дерево алгоритмом Крускала.
250 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Другие работы
Астрономия как профессия
Qiwir
: 9 августа 2013
Астрономия замечательна тем, что звездное небо - предмет ее исследования - доступно в любом месте на Земле. В связи с этим серьезные и полезные для науки наблюдения часто проводят не только профессиональные астрономы, но и любители. Обычно любители астрономии объединяются в кружки и клубы при Домах творчества молодежи, планетариях, пединститутах и связываются с ближайшими астрономическими центрами для консультаций. Очень часто юные любители астрономии, получив высшее образование, становятся проф
10 руб.
Задание №6. вариант №7. Корпус и стойка
vermux1
: 17 ноября 2017
Боголюбов С. К. Индивидуальные задания по курсу черчения. Готовые чертежи.
Задание 6 вариант 7 корпус и стойка
Вычертить изображения контуров деталей и нанести размеры.
Выполнен в компасе 3D V13 чертеж на формате А3
50 руб.
Программное обеспечение инфокоммуникационных технологий (ПО ИТ) - экзамен, билет 20
vlanproekt
: 26 августа 2019
1. Модель OSI. Прикладной уровень
2. IP-адрес. Маска подсети
3. Провести сканирование сети 172.24.0.0/24. Осуществить перехват данных. Результат перенаправить в файл домашней директории
390 руб.
Контрольная работа по физике и лабораторная
falling666
: 11 сентября 2015
Лабораторная работа 6.8
Изучение температурной зависимости электропроводности полупроводников
1. Цель работы
Изучить зависимость электропроводности полупроводникового образца от температуры. Определить ширину запрещенной зоны
Из смотрового окошечка печи излучается поток Фе = 4 кДж/мин. Определить температуру Т печи, если площадь окошечка S = 8 см2.
70 руб.