Математические основы теории систем. Лабораторная работа №4. Вариант №5

Цена:
200 руб.

Состав работы

material.view.file_icon
material.view.file_icon МОТС_ЛР4.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Цель лабораторной работы освоить на практике методы решения уравнений состояния.
Уравнения состояния заданы в виде:
,
y(t) = C x(t),
где x(t) – вектор - столбец переменных состояний;
u(t) – скалярное входное воздействие (вынуждающая функция);
y(t) – скалярный выход системы;
А – основная матрица системы;
В – матрица-столбец связи вынуждающей функции (входа) с перемен-ными состояния;
С – матрица-строка связи переменных состояния с выходом системы.
1. Найти собственные числа и модальную матрицу, соответствующую матрице
2. С помощью метода Кэли-Гамильтона найти переходную матрицу, соответствующую заданной матрице А.
3. Определить переходную матрицу, используя теорему разложения Сильвестра.
4. Вычислить переходную матрицу с применением преобразования Лапласа.
5. Решить уравнение состояния, то есть найти вектор состояния x(t) и выход системы y(t) по полученной переходной матрице, заданному входному воздействию u(t) и вектору начального состояния x(0).
Математические основы теории систем. Лабораторная работа № 4. Вариант №11
Задание №1 Для матрицы А найти собственные числа и модальную матрицу. Задание №2. Методом Кэли-Гамильтона найти переходную матрицу, соответствующую матрице А Задание №3. Найти переходную матрицу, соответствующую матрице А, используя теорему разложения Сильвестра Задание №4. Найти переходную матрицу, соответствующую матрице А, с помощью преобразования Лапласа. Задание №5. Решить уравнение состояния , т.е. найти вектор состояния х(t) и выход системы y(t) по полученной переходной матрице, зада
User oleg778 : 4 июня 2013
200 руб.
Математические основы теории систем
Задание на курсовую работу по дисциплине Математические основы теории систем. Курсовая работа предназначена для проверки результатов освоения студентами дисциплины. Работа состоит в решении пяти задач, охватывающих основные разделы дисциплины. Курсовая работа должна быть оформлена в соответствии с требованиями: иметь титульный лист; содержание, с указанием страниц разделов; основную часть с решением задач; список использованной литературы. Задачи 1. На множестве цифр задать отношение, которое
User Решатель : 14 ноября 2024
5000 руб.
Математические основы теории систем
Математические основы теории систем
Задачи управления 4 Матричный формализм в теории систем 6 Линейные операторы 6 Инвариантное подпространство 6 Действия над векторами 8 Матрицы и линейные преобразования 10 Понятие матриц
User Elfa254 : 10 августа 2013
Математические основы теории систем. Лабораторная работа № 3. Вариант №5
Цель лабораторной работы освоить и закрепить на практике методы решения обыкновенных дифференциальных и разностных уравнений. 1. Дано нелинейное дифференциальное уравнение r = 1(t). а) линеаризовать уравнение вблизи точки статического режима путем разложения в ряд Тейлора. б) решить линеаризованное уравнение при нулевых начальных условиях. в) по линеаризованному уравнению записать передаточную функцию. 2. Используя свойства преобразования Лапласа и приложение 1, найти изображение по Лапласу
User oleg778 : 4 июня 2013
200 руб.
Математические основы теории систем. Лабораторная работа № 3. Вариант №5
«Математические основы теории систем». Лабораторная работа №1. Вариант №5
Цель лабораторной работы освоить основные понятия теории автоматов и основные методы анализа и синтеза конечных автоматов на абстрактном уровне. Автоматы в лабораторной работе заданы автоматной таблицей, в которой строки представляют собой состояния, а столбцы – буквы входного алфавита: на пересечении i-ой строки и j-го столбца стоит номер состояния, в которое переходит автомат из i-го состояния по j-ой входной букве, и через запятую – буква выходного алфавита, появляющаяся при этом на выходе а
User oleg778 : 4 июня 2013
200 руб.
«Математические основы теории систем». Лабораторная работа №1. Вариант №5
Математические основы теории систем. Лабораторная работа № 2. Вариант №5
Цель лабораторной работы – потренироваться в применении операций над автоматами и освоить некоторые методы анализа и синтеза конечных автоматов на структурном уровне. 1. Заданы автоматы А и В. Найти их объединение и пересечение. 2. Заданы автоматы А и В. Найти автомат С = А В, равный их произведению. 3. Заданы автоматы А и В. Найти автомат С = А В, равный их произведению. 4. Заданы автоматы А и В. Найти их сумму А + В. 5. Заданы автоматы А и В. Найти их суперпозицию А В. 7. В заданном баз
User oleg778 : 4 июня 2013
200 руб.
Математические основы теории систем. Лабораторная работа № 2. Вариант №5
Математические основы теории систем (МОТС)
Содержание 1. Задачи на графах 1.1. Задача о кратчайших путях в графе 1.2. Задача о графе минимальной длины 1.3. Задача о критическом пути в графе 1.4. Задача о максимальном потоке в графе 1.5. Транспортная задача на графе 2. Анализ линейных непрерывных систем 2.1. Построение сигнального графа 2.2. Преобразование модели к одному дифференциальному уравнению 2.3. Нахождение переходного процесса при заданных условиях 2.3.1. Аналитический способ 2.3.2. Численный метод с использованием ЭВМ 2.
User Aronitue9 : 31 мая 2012
55 руб.
Курсовая работа по дисциплине "Математические основы теории систем"
СОДЕРЖАНИЕ: 1. ВВЕДЕНИЕ ------------------------------------------------------------------- стр.5 2. ОТЧЕТ О ВЫПОЛНЕНИИ ЗАДАНИЯ Задание 1 ------------------------------------------------------------ стр.6 Задание 2 ------------------------------------------------------------ стр.8 Задание 3 ------------------------------------------------------------ стр.9 Задание 4 ----------------------------------------------------------- стр.19 Задание 5 ------------------------------------------------------
User Aronitue9 : 13 мая 2012
20 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх