Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7

Состав работы

material.view.file_icon 0963E824-5681-4501-83D1-C3D8EB04AA92.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 26.06.2013
Рецензия:Уважаемый
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7.
Билет №7 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 4 0 0 5 3 4 0 7 2 4 4 0 7 0 6 1 5 0 2 6 0 4 7 5 4 1 4 0 3 3 4 5 7 3 0 2. Оптимальным образом расставить скобки при перемножении следующих матриц: М1[4x8], М2[8x4], М3[4x5], М4[5x3], М5[3x6]
User sibguter : 7 апреля 2019
109 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 3 7 8 2 0 4 6 12 3 4 0 16 17 7 6 16 0 18 8 12 17 18 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
User tpogih : 2 мая 2015
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7
Билет №7 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин... 2. Оптимальным образом расставить скобки при перемножении матриц М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
User рулетка : 25 января 2015
200 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №7.
Билет №7 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. Матрица: 2. Оптимальным образом расставить скобки при перемножении матриц M1[8 3], M2[3 5], M3[5 9], M4[9 2], M5[2 4]
User teacher-sib : 31 октября 2017
110 руб.
promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теплотехника 19.03.04 КубГТУ Задача 1 Вариант 35
В идеальный поршневой компрессор поступает М, кг/c воздуха с начальными параметрами р1=0,1 МПа и t1=27 ºC. Воздух сжимается до давления р2. Определить начальный υ1 и конечный υ2 удельные объемы, м³/кг, конечную температуру t2, ºC, изменение энтропии Δs, кДж/(кг·К), l — удельную работу сжатия, кДж/кг, мощность компрессии, N, кВт, а также количество теплоты, участвующее в процессе сжатия Q, кВт и при изобарном охлаждении воздуха в промежуточных охладителях Q0, кВт. Расчет произвести последов
User Z24 : 20 января 2026
400 руб.
Теплотехника 19.03.04 КубГТУ Задача 1 Вариант 35
Методы оптимальных решений. Лабораторная работа №1. Вариант №1.
Лабораторная работа №1 Решение задачи линейного программирования Задание: 1. Составьте математическую модель задачи линейного программирования. 2. Решите её средствами Excel с использованием Поиска решений. 3. Проинтерпретируйте найденное решение. Между двумя пунктами, расстояние между которыми равно 1000 км, необходимо с наименьшими затратами осуществить связь, имеющую a телефонных, b телеграфных и cфототелеграфных каналов с помощью кабелей двух типов. Кабель первого типа содержит a1 телефо
User h0h0l777 : 5 февраля 2016
80 руб.
Усовершенствование тормозной камеры с пружинным энергоаккумулятором пневмопривода автомобиля КамАЗ с применением механизма фиксирования поршня
РЕФЕРАТ Проект: 76 с., 12 рисунков, 6 таблиц, 23 источника, 10 листов формата А1 графического материала. ПРОИЗВОДСТВЕННАЯ ДЕЯТЕЛЬНОСТЬ ПРЕДПРИЯТИЯ, ИСПОЛНИТЕЛЬНЫЕ ТОРМОЗНЫЕ МЕХАНИЗМЫ, ПРЕДЛОГАЕМАЯ КОНСТРУКЦИЯ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПНЕВМОПРИВОДА, РАСЧЕТ ДЕТАЛЕЙ КОНСТРУКЦИИ, БЕЗОПАСНОСТЬ И ЭФФЕКТИВНОСТЬ ПРОЕКТА Объектом дипломного проекта является тормозная привод с пружинным энергоаккумулятором автомобиля КамАЗ. В процессе работы проведен обзор и анализ конструкций тормозных камер с пру
User Рики-Тики-Та : 20 апреля 2017
825 руб.
Экзамен по политологии. Вариант № 3
Экзаменационная работа. Вариант № 3 Вопрос 1. Сравните достоинства и недостатки мажоритарной и пропорциональной избирательных систем. Как вы считаете, почему в России отказались от смешанной и перешли к пропорциональной системе выборов депутатов ГД? Вопрос 2. Политический режим в советской России (2000-2008).
User xtrail : 22 апреля 2013
130 руб.
up Наверх