Графы и частично упорядоченные множества
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Графы и частично упорядоченные множества
Обе эти структуры являются частными случаями бинарных отношений. Пусть задано множество каких-то объектов и из этих объектов по какому-то определенному принципу формируются пары. Например, дано некоторое множество людей, а пары в нем выбираются по такому принципу: первый элемент пары - некий человек, а второй - один из его родителей. При этом один и тот же человек может присутствовать в двух и более парах, например, когда один и тот же человек имеет двоих, троих или более детей. Например, три пары в этом отношении (Иван, Мария), (Дарья, Мария), (Глеб, Мария) означают, что Иван, Дарья и Глеб - дети Марии. В качестве математического примера бинарного отношения можно привести пары, составленные из некоторого множества чисел, при этом первое число в каждой паре меньше второго. Это пример бинарного отношения "меньше". Другой пример: задана некоторая система множеств, а бинарное отношение в этой системе формируется из пар множеств по принципу: первое множество включено во второе множество - это пример бинарного отношения "включение множеств".
Существует много типов бинарных отношений с разными свойствами. Самым общим из этих типов является граф. Это произвольное бинарное отношение, но его особенностью является непривычная терминология - элементы множества, из которого формируются пары, называются вершинами, а сами пары в зависимости от их свойств носят названия ребра или дуги. Графы обычно изображаются не в виде таблицы с двумя колонками (каждая строка такой таблицы представляет пару элементов - вершин), а в виде схемы.
Рассмотрим пример. Пусть задано множество вершин
V = {a, b, c, d, e},
из которого сформировано некоторое множество пар
E = { (a, b), (a, c), (b, d), (c, a), (c, e) }.
Множество пар E, сформированное из множества V вершин, является примером бинарного отношения. Преобразуем это бинарное отношение в схему. Для этого изобразим на листе бумаги все его вершины произвольным образом и соединим эти вершины линиями со стрелками так, чтобы каждая стрелка выходила из первого элемента пары и входила во второй элемент пары (см. рисунок 1). При этом, если окажется, что некоторая пара вершин соединяется стрелкой в одну и в другую сторону, то мы вместо линий со стрелками нарисуем линию без стрелок (для нашего примера это пары (a, c) и (c, a)). С учетом этого дугами в графе являются соединительные линии со стрелками в одну сторону, а ребрами - соединения без стрелок или со стрелками, направленными в обе стороны. Можно считать, что каждое ребро содержат пару разнонаправленных дуг.
Обе эти структуры являются частными случаями бинарных отношений. Пусть задано множество каких-то объектов и из этих объектов по какому-то определенному принципу формируются пары. Например, дано некоторое множество людей, а пары в нем выбираются по такому принципу: первый элемент пары - некий человек, а второй - один из его родителей. При этом один и тот же человек может присутствовать в двух и более парах, например, когда один и тот же человек имеет двоих, троих или более детей. Например, три пары в этом отношении (Иван, Мария), (Дарья, Мария), (Глеб, Мария) означают, что Иван, Дарья и Глеб - дети Марии. В качестве математического примера бинарного отношения можно привести пары, составленные из некоторого множества чисел, при этом первое число в каждой паре меньше второго. Это пример бинарного отношения "меньше". Другой пример: задана некоторая система множеств, а бинарное отношение в этой системе формируется из пар множеств по принципу: первое множество включено во второе множество - это пример бинарного отношения "включение множеств".
Существует много типов бинарных отношений с разными свойствами. Самым общим из этих типов является граф. Это произвольное бинарное отношение, но его особенностью является непривычная терминология - элементы множества, из которого формируются пары, называются вершинами, а сами пары в зависимости от их свойств носят названия ребра или дуги. Графы обычно изображаются не в виде таблицы с двумя колонками (каждая строка такой таблицы представляет пару элементов - вершин), а в виде схемы.
Рассмотрим пример. Пусть задано множество вершин
V = {a, b, c, d, e},
из которого сформировано некоторое множество пар
E = { (a, b), (a, c), (b, d), (c, a), (c, e) }.
Множество пар E, сформированное из множества V вершин, является примером бинарного отношения. Преобразуем это бинарное отношение в схему. Для этого изобразим на листе бумаги все его вершины произвольным образом и соединим эти вершины линиями со стрелками так, чтобы каждая стрелка выходила из первого элемента пары и входила во второй элемент пары (см. рисунок 1). При этом, если окажется, что некоторая пара вершин соединяется стрелкой в одну и в другую сторону, то мы вместо линий со стрелками нарисуем линию без стрелок (для нашего примера это пары (a, c) и (c, a)). С учетом этого дугами в графе являются соединительные линии со стрелками в одну сторону, а ребрами - соединения без стрелок или со стрелками, направленными в обе стороны. Можно считать, что каждое ребро содержат пару разнонаправленных дуг.
Другие работы
Контрольная работа по дисциплине: Проектирование пользовательского интерфейса. Вариант №6
IT-STUDHELP
: 6 ноября 2019
Задание
1. Создать базу данных (БД), состоящую из 2-х заданных таблиц. Поля таблиц произвольные, но не менее четырех полей в каждой таблице, включая ключевое поле (поле типа +(Autoincrement)). В таблицу, которая при объединении будет подчиненной, необходимо включить поле, по которому эта таблица будет связана с первичным ключом главной таблицы (в рассматриваемом здесь примере это поле NFcl таблицы grp2).
2. Разработать Приложение для работы с БД, выполняющее те же функции, что и в приведенном н
200 руб.
Инженерная графика. Задание №35. Вариант №20. Деталь №2
Чертежи
: 26 октября 2019
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения
Задание №35. Вариант №20. Деталь №2
Выполнить по аксонометрической проекции чертеж модели (построить три проекции и нанести размеры).
В состав работы входят 4 файла:
- 3D модель детали;
- ассоциативный чертеж;
- чертеж формата А4 в трёх видах комплексного оформления;
- чертеж формата А3 в трёх видах комплексного оформления.
Помогу с другими вариантами, пишите в ЛС.
60 руб.
Пути повышения эффективности деятельности коммунального предприятия ООО "Жилье-Плюс"
evelin
: 14 ноября 2013
Объект исследования – Коммунальное предприятие ООО «Жилье - Плюс».
Предмет исследования – методические подходы к выполнению анализа финансово – хозяйственной деятельности коммунального предприятия.
Цель работы – обоснование теоретических положений, практических и методических рекомендаций в области оценки финансовых аспектов деятельности и формировании мероприятий по повышению эффективности финансово-хозяйственной деятельности предприятия жилищно-коммунальной сферы.
Методы исследования – сист
10 руб.
Гидравлика Пермская ГСХА Задача 63 Вариант 2
Z24
: 4 ноября 2025
Вода из резервуара по короткому трубопроводу вытекает в атмосферу через сопло. Диаметр сопла dc = 0,5d. Температура воды tºC. Истечение происходит при постоянном напоре над центром тяжести потока Н.
Определить:
Скорость истечения из сопла υ, если заданы коэффициенты местных сопротивлений ζвх и ζкр;
Расход в трубопроводе .
Задачу решить методом последовательного приближения, для чего следует задаться ориентировочным значением скорости в трубопроводе υ = 1…2 м/с. Коэффициент сопротивления
280 руб.