Проблема аномии в современном обществе

Цена:
15 руб.

Состав работы

material.view.file_icon
material.view.file_icon bestref-161124.doc
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Введение

На протяжении всего исторического развития различные общества проходили через состояния кризисов и дезорганизаций, которые нарушали сложившийся порядок, подрывали стабильность социума, разрушали его систему норм и ценностей. Одним из таких кризисных, «болезненных» состояний является аномия, что дословно означает «безнормность» и характеризуется рассогласованностью основных регуляторов социальной структуры – ценностей, отсутствием четкой системы норм. Аномия – явления всеобъемлющее, тотальное, то есть пронизывает все сферы жизни общества. Ещё Э. Дюркгейм в работах «О разделении общественного труда» и «Самоубийство» отмечал, что аномия охватывает социум как на макро (экономическая аномия), так и на микроуровнях (семейная аномия, аномия как психологическое состояние отдельного индивида). Безусловно, о стабильности общества в такой ситуации говорить не приходиться. Периоды дезинтеграции в жизни любой страны – переломные моменты. Они представляют очень тяжёлое испытание для каждого гражданина, поэтому их необходимо преодолеть как можно быстрее, пытаясь уменьшить количество негативных последствий.

По оценкам многих отечественных специалистов, современное российское общество находится в таком нестабильном, аномичном состоянии: старые нормы советского периода утратили своё значение, а новые – советские, рыночные только находятся в процессе становления, и пока не полностью утвердились и укрепились в умах членов общества . Отсутствие четкой, принимаемой большинством системы ценностей, норм, может привести к колоссальным последствиям - от роста числа преступности (по Э. Дюркгейму) до глубокого затяжного кризиса всего социума в целом. Состояние безнормности, дезинтеграции приводит к потере ориентиров у людей, их мировоззрение – система взглядов на мир, жизненные позиции, идеалы, убеждения – перестает быть целостным, единым. В результате возникает угроза нестабильности всей социальной структуры, всего общества целом.
Ступень погружного центробежного насоса-Патентно-информационный обзор. Чертеж-Оборудование для добычи и подготовки нефти и газа
УЭЦН (Установка ЭЦН, Установка электрического центробежного насоса) УЭЦН относится к погружным бесштанговым насосным установкам лопастного типа. Оборудование УЭЦН состоит из погружной части, спускаемой в скважину вертикально на колонне НКТ, и наземной части соединенные между собой погружным силовым кабелем.
297 руб.
Ступень погружного центробежного насоса-Патентно-информационный обзор. Чертеж-Оборудование для добычи и подготовки нефти и газа
Освещение проблемы национализма зарубежными учеными
Введение……………….………………………………………….3-6 Раздел 1: Концепция К. Калхуна………………………………..7-10 Раздел 2: Научный подход Г. Лебона …………………………11-17 Раздел 3: Концепция. Э. Балибара и И. Валлерстайна…..…....18-29 Раздел 4: Научный подход Э. Хобсбаума ……………………..30-36 Раздел 5: Точка зрения Ш. Морраса ……………………………37-44 Заключение……………………….……………………………… 45-47 Список используемой литературы……..……………………..48 Введение В данной курсовой работе мы попытаемся осветить проблему, которая является очень острой в со
User Elfa254 : 10 января 2014
5 руб.
Второе начало (закон) термодинамики. Концепция энтропии и закон её возрастания
В системе тел, находящихся в термодинамическом равновесии, без внешнего вмешательства невозможны никакие реальные процессы. Следовательно, с помощью тел, находящихся в термодинамическом равновесии, невозможно совершить никакой работы, так работа связана с механическим движением, т.е. с переходом тепловой энергии в кинетическую. Утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии, составляет сущность второго начала термодинамики. (Тепло не
User Elfa254 : 9 августа 2013
Комбинаторные условия фасетности опорных неравенств
Пусть E- конечное множество, H- некоторое семейство его подмножеств. Мы будем рассматривать комбинаторно полные семейства, то есть семейства H, удовлетворяющие следующим аксиомам: 1) для любого eE найдутся такие H1H и H2H, что eH1H2; 2) для любых e1, e2E найдется такой HH, что e1H и e2H. Сопоставим множеству E E-мерное евклидово пространство RE посредством взаимнооднозначного соответствия между E и множеством координатных осей пространства RE. Иными словами, RE можно мыслить как пространство ве
User Lokard : 12 августа 2013
10 руб.
up Наверх