Алгоритмы сжатия данных
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Введение
Общие сведения
Энтропия и количество информации
Комбинаторная, вероятностная и алгоритмическая оценка количества информации
Моделирование и кодирование
Некоторые алгоритмы сжатия данных
Алгоритм LZ77
Алгоритм LZ78-LZW84
Алгоритм PPM
BWT - преобразование и компрессор
Кодирование Хаффмана
Арифметическое кодирование
Алгоритм арифметического кодирования
Реализация алгоритма арифметического кодирования
Реализация модели
Доказательство правильности декодирования
Приращаемая передача и получение
Отрицательное переполнение
Переполнение и завершение
Адаптивная модель для арифметического кодирования
Эффективность сжатия
Заключение
Список литературы
Приложение 1. Программный код
Приложение 2. Интерфейс программы
Введение
Основоположником науки о сжатии информации принято считать Клода Шеннона. Его теорема об оптимальном кодировании показывает, к чему нужно стремиться при кодировании информации и на сколько та или иная информация при этом сожмется. Кроме того, им были проведены опыты по эмпирической оценке избыточности английского текста. Он предлагал людям угадывать следующую букву и оценивал вероятность правильного угадывания. На основе ряда опытов он пришел к выводу, что количество информации в английском тексте колеблется в пределах 0.6 — 1.3 бита на символ. Несмотря на то, что результаты исследований Шеннона были по-настоящему востребованы лишь десятилетия спустя, трудно переоценить их значение.
Первые алгоритмы сжатия были примитивными в связи с тем, что была примитивной вычислительная техника. С развитием мощностей компьютеров стали возможными все более мощные алгоритмы. Настоящим прорывом было изобретение Лемпелем и Зивом в 1977 г. словарных алгоритмов. До этого момента сжатие сводилось к примитивному кодированию символов. Словарные алгоритмы позволяли кодировать повторяющиеся строки символов, что позволило резко повысить степень сжатия. Важную роль сыграло изобретение примерно в это же время арифметического кодирования, позволившего воплотить в жизнь идею Шеннона об оптимальном кодировании. Следующим прорывом было изобретение в 1984 г. алгоритма РРМ. Следует отметить, что это изобретение долго оставалось незамеченным. Дело в том, что алгоритм сложен и требует больших ресурсов, в первую очередь больших объемов памяти, что было серьезной проблемой в то время. Изобретенный в том же 1984 г. алгоритм LZW был чрезвычайно популярен благодаря своей простоте, хорошей рекламе и нетребовательности к ресурсам, несмотря на относительно низкую степень сжатия. На сегодняшний день алгоритм РРМ является наилучшим алгоритмом для сжатия текстовой информации, a LZW давно уже не встраивается в новые приложения (однако широко используется в старых).
Будущее алгоритмов сжатия тесно связано с будущим компьютерных технологий. Современные алгоритмы уже вплотную приблизились к Шенноновской оценке 1.3 бита на символ, но ученые не видят причин, по которым компьютер не может предсказывать лучше, чем человек. Для достижения высоких степеней сжатия приходится использовать более сложные алгоритмы. Однако существовавшее одно время предубеждение, что сложные алгоритмы с более высокой степенью сжатия всегда более медленны, несостоятельно. Так, существуют крайне быстрые реализации алгоритмов РРМ для текстовой информации и SPIHT для графики, имеющие очень высокую степень сжатия.
Общие сведения
Энтропия и количество информации
Комбинаторная, вероятностная и алгоритмическая оценка количества информации
Моделирование и кодирование
Некоторые алгоритмы сжатия данных
Алгоритм LZ77
Алгоритм LZ78-LZW84
Алгоритм PPM
BWT - преобразование и компрессор
Кодирование Хаффмана
Арифметическое кодирование
Алгоритм арифметического кодирования
Реализация алгоритма арифметического кодирования
Реализация модели
Доказательство правильности декодирования
Приращаемая передача и получение
Отрицательное переполнение
Переполнение и завершение
Адаптивная модель для арифметического кодирования
Эффективность сжатия
Заключение
Список литературы
Приложение 1. Программный код
Приложение 2. Интерфейс программы
Введение
Основоположником науки о сжатии информации принято считать Клода Шеннона. Его теорема об оптимальном кодировании показывает, к чему нужно стремиться при кодировании информации и на сколько та или иная информация при этом сожмется. Кроме того, им были проведены опыты по эмпирической оценке избыточности английского текста. Он предлагал людям угадывать следующую букву и оценивал вероятность правильного угадывания. На основе ряда опытов он пришел к выводу, что количество информации в английском тексте колеблется в пределах 0.6 — 1.3 бита на символ. Несмотря на то, что результаты исследований Шеннона были по-настоящему востребованы лишь десятилетия спустя, трудно переоценить их значение.
Первые алгоритмы сжатия были примитивными в связи с тем, что была примитивной вычислительная техника. С развитием мощностей компьютеров стали возможными все более мощные алгоритмы. Настоящим прорывом было изобретение Лемпелем и Зивом в 1977 г. словарных алгоритмов. До этого момента сжатие сводилось к примитивному кодированию символов. Словарные алгоритмы позволяли кодировать повторяющиеся строки символов, что позволило резко повысить степень сжатия. Важную роль сыграло изобретение примерно в это же время арифметического кодирования, позволившего воплотить в жизнь идею Шеннона об оптимальном кодировании. Следующим прорывом было изобретение в 1984 г. алгоритма РРМ. Следует отметить, что это изобретение долго оставалось незамеченным. Дело в том, что алгоритм сложен и требует больших ресурсов, в первую очередь больших объемов памяти, что было серьезной проблемой в то время. Изобретенный в том же 1984 г. алгоритм LZW был чрезвычайно популярен благодаря своей простоте, хорошей рекламе и нетребовательности к ресурсам, несмотря на относительно низкую степень сжатия. На сегодняшний день алгоритм РРМ является наилучшим алгоритмом для сжатия текстовой информации, a LZW давно уже не встраивается в новые приложения (однако широко используется в старых).
Будущее алгоритмов сжатия тесно связано с будущим компьютерных технологий. Современные алгоритмы уже вплотную приблизились к Шенноновской оценке 1.3 бита на символ, но ученые не видят причин, по которым компьютер не может предсказывать лучше, чем человек. Для достижения высоких степеней сжатия приходится использовать более сложные алгоритмы. Однако существовавшее одно время предубеждение, что сложные алгоритмы с более высокой степенью сжатия всегда более медленны, несостоятельно. Так, существуют крайне быстрые реализации алгоритмов РРМ для текстовой информации и SPIHT для графики, имеющие очень высокую степень сжатия.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.