Исследования зависимости производства ликероводочных изделий с экономическими показателями
Состав работы
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Определить существует ли зависимость между производством ликеро-водочных изделей (Y) и :
1- валовый сбор зерна (X1);
2 - валовый сбор сахарной свеклы (X2);
3- потребление пива (X3);
4- население России (X4);
5- потребление водки (X5).
В случае обнаружения зависимости построить оптимальную модель, котороя могла бы быть пригодной для прогноза.
Первичный анализ исходных данных.
Анализ динамики производства ликеро-водочных изделий (Y) показывает, что за период наблюдения (N=21) минимальное производство был равно 138.1, а максимальным 209.2, тем самым изменение величины Y было в пределах 71.1. Вариация равная 12.2126% свидетельствует об однородности величины Y (<33%). Отклонение от среднего значения (176.5905) в среднем не превышало 17.5814 (среднее абсолютное отклонение), эксцесс (-1.1554) и асимметрия (-0.1873) утверждает, что распределение величины Y имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина Y имеет тенденцию к увеличению, средний темп прироста составляет -0.981% .
Анализ динамики валового сбора зерна (X1) показывает, что за период наблюдения (N=21) минимальный сбор был равен 248.1, а максимальным 356.3, тем самым изменение величины X1 было в пределах 108.2. Вариация равная 10.6046% свидетельствует об однородности величины X1 (<33%). Отклонение от среднего значения (313.5953) в среднем не превышало 33.2555 (среднее абсолютное отклонение), эксцесс (-0.9713) и асимметрия (-0.5517) утверждает, что распределение величины X1 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина X1 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 1.0741% или на 0.0254 единиц измерения (% от номинала в миллионах тонн). Сбор до 16 наблюдения имеет тенденцию к увеличению, в период от 16 до 21 наблюдается падение сбора.
Анализ динамики валового сбора сахарной свеклы (X2) показывает, что за период наблюдения (N=21) минимальный сбор был равен 20812, а максимальный 33177, тем самым изменение величины X2 было в пределах 12365. Вариация равная 13.9157% свидетельствует об однородности величины X2 (<33%). Отклонение от среднего значения (26846.0952) в среднем не превышало 3735.8119 (среднее абсолютное отклонение), эксцесс (-1.1144) и асимметрия (0.324) утверждает, что распределение величины X2 имеет незначительный сдвиг вправо и плосковершинность.
Величина X2 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 0.9409%.
Анализ динамики потребление пива (X3) показывает, что за период наблюдения (N=21) минимальное потребление пива было 92.4, а максимальная 106.1, тем самым изменение величины X3 было в пределах 13.7. Вариация равная 3.8059% свидетельствует об однородности величины X3 (<33%). Отклонение от среднего значения (99.5857) в среднем не превышало 3.7902 (среднее абсолютное отклонение), эксцесс (5.6717) и асимметрия (1.4085) утверждает, что распределение величины X3 имеет незначительный сдвиг вправо и достаточно выраженную островершинность.
Величина X3 имеет тенденцию к росту, т.к. средний темп прироста составляет 0.0821% . Потребление пива во время 9 наблюдения имеет резкое падение.
Анализ динамики населения России (X4) показывает, что за период наблюдения (N=21) минимальное население было 130.1, а максимальное 147.4, тем самым изменение величины X4 было в пределах 17.3. Вариация равная 3.6811% свидетельствует об однородности величины X4 (<33%). Отклонение от среднего значения (138.7) в среднем не превышало 5.1057 (среднее абсолютное отклонение), эксцесс (-1.2575) и асимметрия (0.1499) утверждает, что распределение величины X4 имеет незначительный сдвиг вправо и незначительную плосковершинность.
Величина X4 имеет тенденцию к возрастанию, т.к. средний темп прироста составляет 0.6262% .Кривая распределения величины Х4 имеет небольшой подъем вверх.
1- валовый сбор зерна (X1);
2 - валовый сбор сахарной свеклы (X2);
3- потребление пива (X3);
4- население России (X4);
5- потребление водки (X5).
В случае обнаружения зависимости построить оптимальную модель, котороя могла бы быть пригодной для прогноза.
Первичный анализ исходных данных.
Анализ динамики производства ликеро-водочных изделий (Y) показывает, что за период наблюдения (N=21) минимальное производство был равно 138.1, а максимальным 209.2, тем самым изменение величины Y было в пределах 71.1. Вариация равная 12.2126% свидетельствует об однородности величины Y (<33%). Отклонение от среднего значения (176.5905) в среднем не превышало 17.5814 (среднее абсолютное отклонение), эксцесс (-1.1554) и асимметрия (-0.1873) утверждает, что распределение величины Y имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина Y имеет тенденцию к увеличению, средний темп прироста составляет -0.981% .
Анализ динамики валового сбора зерна (X1) показывает, что за период наблюдения (N=21) минимальный сбор был равен 248.1, а максимальным 356.3, тем самым изменение величины X1 было в пределах 108.2. Вариация равная 10.6046% свидетельствует об однородности величины X1 (<33%). Отклонение от среднего значения (313.5953) в среднем не превышало 33.2555 (среднее абсолютное отклонение), эксцесс (-0.9713) и асимметрия (-0.5517) утверждает, что распределение величины X1 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.
Величина X1 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 1.0741% или на 0.0254 единиц измерения (% от номинала в миллионах тонн). Сбор до 16 наблюдения имеет тенденцию к увеличению, в период от 16 до 21 наблюдается падение сбора.
Анализ динамики валового сбора сахарной свеклы (X2) показывает, что за период наблюдения (N=21) минимальный сбор был равен 20812, а максимальный 33177, тем самым изменение величины X2 было в пределах 12365. Вариация равная 13.9157% свидетельствует об однородности величины X2 (<33%). Отклонение от среднего значения (26846.0952) в среднем не превышало 3735.8119 (среднее абсолютное отклонение), эксцесс (-1.1144) и асимметрия (0.324) утверждает, что распределение величины X2 имеет незначительный сдвиг вправо и плосковершинность.
Величина X2 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 0.9409%.
Анализ динамики потребление пива (X3) показывает, что за период наблюдения (N=21) минимальное потребление пива было 92.4, а максимальная 106.1, тем самым изменение величины X3 было в пределах 13.7. Вариация равная 3.8059% свидетельствует об однородности величины X3 (<33%). Отклонение от среднего значения (99.5857) в среднем не превышало 3.7902 (среднее абсолютное отклонение), эксцесс (5.6717) и асимметрия (1.4085) утверждает, что распределение величины X3 имеет незначительный сдвиг вправо и достаточно выраженную островершинность.
Величина X3 имеет тенденцию к росту, т.к. средний темп прироста составляет 0.0821% . Потребление пива во время 9 наблюдения имеет резкое падение.
Анализ динамики населения России (X4) показывает, что за период наблюдения (N=21) минимальное население было 130.1, а максимальное 147.4, тем самым изменение величины X4 было в пределах 17.3. Вариация равная 3.6811% свидетельствует об однородности величины X4 (<33%). Отклонение от среднего значения (138.7) в среднем не превышало 5.1057 (среднее абсолютное отклонение), эксцесс (-1.2575) и асимметрия (0.1499) утверждает, что распределение величины X4 имеет незначительный сдвиг вправо и незначительную плосковершинность.
Величина X4 имеет тенденцию к возрастанию, т.к. средний темп прироста составляет 0.6262% .Кривая распределения величины Х4 имеет небольшой подъем вверх.
Другие работы
Управленческие нововведения на предприятии как стратегический ресурс инновационного развития
alfFRED
: 28 февраля 2014
ВВЕДЕНИЕ………………………………………………………………3
ГЛАВА 1 Социологический анализ категории «инновационное развитие»…………………………….…………………………………..6
ГЛАВА 2 Сущность и классификация управленческих нововведений……………………………………………………………11
ГЛАВА 3 Особенности реализации управленческих нововведений на предприятии в контексте инновационного развития страны………………...15
ЗАКЛЮЧЕНИЕ………………………………………………………………….23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………….25
ВВЕДЕНИЕ
Инновационность лежит в основе конкурентоспособности экономи
10 руб.
Теоретическая механика РГАЗУ Задача 1 Рисунок 4 Вариант 4
Z24
: 18 ноября 2025
Определение реакций опор твёрдого тела
Определить реакции опор А и В плоской балки, если на нее действуют сосредоточенные силы Р1 и Р2, алгебраический момент пары сил М и равномерно распределенная нагрузка интенсивностью q.
Схемы нагружения десяти типов даны на рисунках под номерами от 1 до 10, а числовые данные для расчета приведены в таблице 6.
200 руб.
Совершенствование оборудования в линии производства гранулированных комбикормов (модернизация пресса-гранулятора Т-520 и охладителя гранул комбикорма ОПТ -10 )
Shloma
: 4 мая 2023
Дипломный проект
Содержание
Введение.......
1 Анализ современных объектов аналогичного назначения
1.1 Описание технологической схемы производства
гранулированных комбикормов
1.2 Назначение, классификация и современные конструкции оборудования для производства комбикормов
1.2.1 Гранулятор...
1.2.2 Охладитель гранул......
1.3.Патентная проработка проекта......
1.4 Формулирование идеи и обоснование технического решения.........
2. Описание разработанных объектов.......
2.1 О
1590 руб.
Проектирование техпроцесса мехобработки детали "Ступица"
DoctorKto
: 15 октября 2012
Введение. Цель и задачи разработки. Общий раздел. Описание машины, узла конструкции детали и ее назначение в узле или машине. Материал детали и его свойства. Анализ технологичности детали. Количественная и качественная оценка технологичности. Выбор типа производства и оптимального размера партии. Технологический раздел. Выбор и обоснование метода получения заготовки. Технико-экономическое обоснование лучшего варианта заготовки (по КИМ и стоимости). Расчет промежуточных припусков и размеров загот