Контрольная работа по дисциплине: Математика (2-й семестр). ВАРИАНТ №4
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание 1. Дана функция и точка .
Найти: а) градиент данной функции в точке A;
б) производную данной функции в точке A по направлению вектора
Задание 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнение в декартовых координатах (а > 0)
Задание 3. Вычислить объем тела ограниченного кривыми
Задание 4. Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть - основание пирамиды, принадлежащее плоскости ; - контур, ограничивающий ; - нормаль к , направленная вне пирамиды . Требуется вычислить:
1) циркуляцию векторного поля по замкнутому контуру по формуле Стокса;
2) поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности, применив теорему Остроградского – Гаусса.
Найти: а) градиент данной функции в точке A;
б) производную данной функции в точке A по направлению вектора
Задание 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнение в декартовых координатах (а > 0)
Задание 3. Вычислить объем тела ограниченного кривыми
Задание 4. Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть - основание пирамиды, принадлежащее плоскости ; - контур, ограничивающий ; - нормаль к , направленная вне пирамиды . Требуется вычислить:
1) циркуляцию векторного поля по замкнутому контуру по формуле Стокса;
2) поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности, применив теорему Остроградского – Гаусса.
Дополнительная информация
Работа зачтена в 2013 г.
Похожие материалы
Контрольная работа по дисциплине: "Высшая математика", вариант №4 (1-й семестр)
maxmax2000
: 5 апреля 2020
1.Решить систему уравнений методом Крамера
{█(x+y+2z= -1@2x-y+2z= -4@4x+y+4z= -2)
2.По заданным точкам А, В, С и D составить уравнение прямой АВ и плоскости ВСD, вычислить угол между ними и найти расстояние от точки А до плоскости ВСD.
А(0, 0, 0), В(-2, 0, 0), С(0, 2, 0), D(1, -1, 1)
3.Вычислить предел отношения величин
а) lim┬(x→∞)〖(x^2-x-2)/(3+2x-x^4 )〗; б)lim┬(x→0)〖(1-〖cos〗^2 x)/(2x^2 )〗
4.Исследовать функцию и построить эскиз графика
y=(x+4)/(x-2)
5.Вычислить площадь плоской фигуры, ог
420 руб.
3-й семестр. Контрольная работа по дисциплине: Математика
vasiakollaider
: 21 апреля 2014
Вариант 3
Решал это дело лично, с подробным описанием
1) z=ln(5x^2+3y^2) ; A(1;1) ; a(3;2)
2)〖〖(x〗^2+y^2)〗^3=a^2 x^2 (4x^2+3y^2)
3) z≥0; z=4-x-y ; x^2+y^2=4
4)Даны векторное поле F = Xi + Yj + Zk и плоскость Ax + By + Cz + D = 0(p),
F = (x +2y - z)i; -x + 2y + 2z – 4 = 0.
100 руб.
Контрольная работа по дисциплине: Математика. Вариант №2 (2-й семестр)
Amor
: 3 июня 2014
Задача 1
Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2), A(2;1), a(3;-4)
Задача 2 Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением:
(x^(2)+y^(2))^(2)=a^(2)*(4x^(2)+y^(2))
Задача 3
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, z=9-y^(2), x^(2)+y^(2)=9
Задача 4
100 руб.
Контрольная работа по дисциплине: Математика. Вариант №21 (1-й семестр)
Jack
: 12 февраля 2014
Задача 1. Найти пределы функций (см. скрин)
Задача 2. Найти значение производных данных функций в точке x=0 (см. скрин)
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций. (см. скрин)
Задача 4. Найти неопределенные интегралы (см. скрин)
Задача 5. Вычислить площади областей, заключённых между линиями:
y=3x-1; y=x^(2)-2x+5
450 руб.
Контрольная работа по дисциплине: Математика (1-й семестр). Вариант № 21
Amor
: 3 ноября 2013
Задача 1. Найти пределы функций: (см. скриншот)
Задача 2. Найти значение производных данных функций в точке x=0: (см. скриншот)
Задача 3. Провести исследование функций с указанием (см. скриншот)
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы: (см. скриншот)
Задача 5. Вычислить площади областей, заключённых между линиями: (см. скриншот)
500 руб.
Контрольная работа по дисциплине: Математика. (1-й семестр). Вариант №10
Amor
: 2 ноября 2013
Задача 1.(3.10). Найти пределы функций: (см. скриншот)
Задача 2.(4.10). Найти значение производной в точке х = 0 (см. скриншот)
Задача 3. (7.10). Провести исследование функции с указанием (см. скриншот)
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4.(5.10).
Найти неопределенный интегралы: (см. скриншот)
Задача 5.(7.10). Вычислить площадь области, заключенной между линиями:
y=x-2
y=3x-x^(2)-2
500 руб.
Контрольная работа по математике. вариант 4-й. (семестр 1)
kolganov91
: 3 сентября 2014
1.4)
{█(х+у+2z=-1@2x-y+2z=-4@4x+y+4z=-2)
Метод Крамера
2) Метод Гаусса
{█(x+y+2z=-1@2x-y+2z=-4@4x+y+4z=-2)
2.4)
Даны координаты вершин пирамиды А1А2А3А4
Найти:
1) Длину ребра А1А2
2) Угол между ребрами А1А2 и А1А4
3) Площадь грани А1А2А3
4) Уравнение плоскости А1А2А3
5) Объем пирамиды А1А2А3А4
А1(7;1;-3) А2(1;5;1) А3(-1;3;0) А4(1;1;1)
Оценка отлично
70 руб.
Математика. Контрольная работа. 3-й семестр. Вариант №4
angy
: 22 марта 2014
Вариант No4 (формулы не вставляются)
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая сов
30 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.