Статистический анализ деятельности предприятия
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задачи математической статистики
Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.
Первая задача математической статистики — указать способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате специально поставленных экспериментов.
Вторая задача математической статистики — разработать методы анализа статистических данных в зависимости от целей исследования. Сюда относятся:
а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.;
б) проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого известен.
Современная математическая статистика разрабатывает способы определения числа необходимых испытаний до начала исследования (планирование эксперимента), в ходе исследования (последовательный анализ) и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределенности.
Итак, задача математической статистики состоит в созадании методов сбора и обработки статистических данных для получения научных и практических выводов.
Способы отбора
Принципиально эти способы можно подразделить на два вида:
1 Отбор, не требующий расчленения генеральной совокупности на части:
1.1 простой случайный бесповторный отбор;
1.2 б) простой случайный повторный отбор.
2 Отбор, при котором генеральная совокупность разбивается на части:
2.1 типический отбор;
2.2 механический отбор;
2.3 серийный отбор.
Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности. Осуществить простой отбор можно различнымн способами. Например, для извлечения п объектов из генеральной совокупности объема N поступают так: выписывают номера от 1 до N на карточках, которые тщательно перемешивают, и наугад вынимают одну карточку; объект, имеющий одинаковый номер с извлеченной карточкой, подвергают обследованию; затем карточку возвращают в пачку и процесс повторяют, т. е. карточки перемешивают, наугад вынимают одну из них и т. д. Так поступают п раз; в итоге получают простую случайную повторную выборку объема п.
Если извлеченные карточки не возвращать в пачку, то выборка является простой случайной бесповторной.
При большом объеме генеральной совокупности описанный процесс оказывается очень трудоемким. В этом случае пользуются готовыми таблицами«случайных чисел», в которых числа расположены в случайном порядке. Для того чтобы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают под-ряд 50 чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами. Если бы оказалось, что случайное число таблицы превышает число N, то такое случайное число пропускают. При осуществлении бесповторной выборки случайные числа таблицы, уже встречавшиеся ранее, следует также пропустить.
Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типической» части. Например, если детали изготовляют на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукдии каждого станка в отдельности. Типическим отбором лользуются тогда, когда обследуемый признак заметно колеблется в различных типических частях генеральной совокупности. Например, если продукция изготовляется на нескольких машинах, среди которых есть более и менее изношенные, то здесь типи-ческий отбор целесообразен.
Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.
Первая задача математической статистики — указать способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате специально поставленных экспериментов.
Вторая задача математической статистики — разработать методы анализа статистических данных в зависимости от целей исследования. Сюда относятся:
а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.;
б) проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого известен.
Современная математическая статистика разрабатывает способы определения числа необходимых испытаний до начала исследования (планирование эксперимента), в ходе исследования (последовательный анализ) и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределенности.
Итак, задача математической статистики состоит в созадании методов сбора и обработки статистических данных для получения научных и практических выводов.
Способы отбора
Принципиально эти способы можно подразделить на два вида:
1 Отбор, не требующий расчленения генеральной совокупности на части:
1.1 простой случайный бесповторный отбор;
1.2 б) простой случайный повторный отбор.
2 Отбор, при котором генеральная совокупность разбивается на части:
2.1 типический отбор;
2.2 механический отбор;
2.3 серийный отбор.
Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности. Осуществить простой отбор можно различнымн способами. Например, для извлечения п объектов из генеральной совокупности объема N поступают так: выписывают номера от 1 до N на карточках, которые тщательно перемешивают, и наугад вынимают одну карточку; объект, имеющий одинаковый номер с извлеченной карточкой, подвергают обследованию; затем карточку возвращают в пачку и процесс повторяют, т. е. карточки перемешивают, наугад вынимают одну из них и т. д. Так поступают п раз; в итоге получают простую случайную повторную выборку объема п.
Если извлеченные карточки не возвращать в пачку, то выборка является простой случайной бесповторной.
При большом объеме генеральной совокупности описанный процесс оказывается очень трудоемким. В этом случае пользуются готовыми таблицами«случайных чисел», в которых числа расположены в случайном порядке. Для того чтобы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают под-ряд 50 чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами. Если бы оказалось, что случайное число таблицы превышает число N, то такое случайное число пропускают. При осуществлении бесповторной выборки случайные числа таблицы, уже встречавшиеся ранее, следует также пропустить.
Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типической» части. Например, если детали изготовляют на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукдии каждого станка в отдельности. Типическим отбором лользуются тогда, когда обследуемый признак заметно колеблется в различных типических частях генеральной совокупности. Например, если продукция изготовляется на нескольких машинах, среди которых есть более и менее изношенные, то здесь типи-ческий отбор целесообразен.
Другие работы
Зачетная работа По дисциплине: Микропроцессорная техника в системах связи. Билет 3
ilya2213
: 30 октября 2022
Билет №3
1. Устройство параллельных портов MCS-51.
2. Типы данных языка С.
49 руб.
Контрольная работа по дисциплине: Информатика. Вариант №
IT-STUDHELP
: 17 мая 2023
Контрольная работа
1. Обработка одномерных массивов.
Цель: изучение простейших алгоритмов организации и обработки одномерных массивов на языке С++.
Задание
1. Самостоятельно изучить возможности языка программирования C++ для описания, инициализации и обработки одномерных массивов.
2. Создать консольное приложение, в котором реализовать следующие вычисления:
объявление заданного массива целых чисел фиксированной длины;
инициализацию элементов массива посредством ввода с клавиатуры;
заданный
500 руб.
Алгоритм нахождения простых чисел
alfFRED
: 15 августа 2013
Индийские математики и специалисты в области компьютерного обеспечения заявляют, что разработали метод, позволяющий безошибочно и быстро определять, простым ли является то или иное число. Проблема быстрого определения простых чисел, над которой исследователи бились в течение более чем 2200 лет, является важнейшей в улучшении современной компьютерной техники.
Простые числа - это ключ к разрешению многих математических проблем, они также играют большую роль в криптографии (шифровании), благодаря ч
Расчетно-графический анализ тягово-скоростных свойств автомобиля ИЖ-2715, движущегося по дороге с коэффициентом суммарного дорожного сопротивления 0,026.
yura909090
: 24 мая 2012
В курсовой работе я анализирую тягово-скоростные свойства, которые определяют возможный диапазон скоростей движения, интенсивность и путь разгона в тяговом режиме, предельные дорожные условия, при которых автомобиль способен двигаться с заданными конструктивными параметрами. Чем лучше тягово-скоростные свойства, тем меньшие затраты времени на перевозку. Что положительно сказывается на его продуктивности.
В данной работе я буду производить расчетно-графический анализ для автомобиля ИЖ-2715, дви
80 руб.