Лабораторная работа №3 по дискретной математике
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1. Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2. Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3. После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4. Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥ .
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥ .
5. Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Зачет
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1. Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2. Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3. После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4. Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥ .
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥ .
5. Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Зачет
Похожие материалы
Лабораторная работа №3 по дискретной математике
migsvet
: 7 апреля 2012
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО
100 руб.
Лабораторная работа № 3 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
48 руб.
Лабораторная работа №3. Дискретная математика. (СибГУТИ)
Lost
: 15 февраля 2012
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО
70 руб.
Лабораторная работа №3 по предмету "Дискретная математика".
Greenberg
: 29 июля 2011
Работа № 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством
79 руб.
Лабораторная работа №3, Вариант №3. Дискретная математика.
Jersey
: 24 октября 2016
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексиког
70 руб.
Лабораторная работа №3. Дискретная математика - Вариант №3
JulDir
: 2 февраля 2013
Постановка задачи
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством минимально возможных перестановок – сгенерировать последовательно возра
39 руб.
Лабораторная работа №3. Генерация перестановок. Дискретная математика. ДО
rukand
: 22 марта 2013
Лабораторная работа № 3
Генерация перестановок
1. Задание на лабораторную работу
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это перв
80 руб.
Лабораторные работы № 1-3. Дискретная математика. (СибГУТИ)
Lost
: 15 февраля 2012
Работа 1.
Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается требуемая опе
150 руб.
Другие работы
Требования к системе защиты информации
snailc4
: 14 января 2022
Реферат по предмету Основы информационной безопасности в телекоммуникациях Сибгути 2013
Оглавление
ВВЕДЕНИЕ 3
1. Защита компьютерной информации: основные понятия и определения 5
2. Классификация угроз безопасности информации 9
3. Формы атак на объекты информационных систем 16
3. ТРЕБОВАНИЯ К СИСТЕМАМ ЗАЩИТЫ ИНФОРМАЦИИ 22
3.1. Группы требований. Общие и организационные требования 22
3.2. Конкретные требования к подсистемам защиты информации 28
4. Государственное регулирование в сфере защиты инфор
150 руб.
Курсовой проект. «Акустический расчет помещения: телевизионная студия». Вариант 1
Apollo
: 7 октября 2017
Исходные данные
Тип помещения: телевизионная студия,
Размеры l: b: h = 37:20/26:14
Двери: размером 3x2 в количестве 6 штук.
2 Выбор размеров и формы помещения
2.1 Выбор размеров
Размеры и форма помещения в зависимости от его назначения должны удовлетворять определенному соотношению длины, ширины и высоты с точностью до 10%. По заданию данное помещение будет использоваться в качестве телевизионной студии, следовательно соотношение золотого сечения l:b:h=2,62:1,62:1.
250 руб.
Контрольная работа по дисциплине: Автоматизированное проектирование телекоммуникационных сетей. Вариант №4(14)
Jurgen
: 24 ноября 2013
Контрольная работа.
Задание.
В задании предлагается 9 вариантов задач.
Студент выбирает вариант соответствующий последней цифре пароля.
Для каждого варианта необходимо решить следующие задачи:
1. Сделать теоретико-множественное представление графа.
2. Найти матрицу расстояний графа сети связи по выбранному варианту
3. Построить двойственный граф.
4. Построить оптимальную сеть проводного вещания.
5. Найти оптимальное место расположение РАТС при минимизации капитальных затрат на линейные со
200 руб.
Банковская система Франции и США
Slolka
: 8 декабря 2013
Налоговые системы разных стран являются продуктом длительной эволюции их экономик. В них отразилась специфика государственного устройства, приоритетность направлений в формировании структуры общественного производства, особенности государственной внутренней и внешней политики, национальный менталитет. Вместе с тем, усиливающаяся интеграция экономик стран отдельных регионов, расширение хозяйственных связей товаропроизводителей и создание транснациональных корпораций обусловили необходимость макси
5 руб.