Контрольная работа по дисциплине: «Математический анализ». Вариант №6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arctg(xy^2); A(2;3), a(4;-3)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^6=a^2(x^4-y^4)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, 4z=y^2, 2x-y=0, x+y=9
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(2x+4y+3z)k; 3x+2y+3z-6=0
z=arctg(xy^2); A(2;3), a(4;-3)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^6=a^2(x^4-y^4)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, 4z=y^2, 2x-y=0, x+y=9
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(2x+4y+3z)k; 3x+2y+3z-6=0
Дополнительная информация
Оценка - отлично!
Похожие материалы
Контрольная работа по дисциплине Математический анализ. Вариант №6
wertystn
: 28 января 2019
1. Найти пределы
2. Найти производные данных функций
3. 3. Исследовать методами дифференциального исчисления функцию
70 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Nadyuha
: 15 декабря 2016
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график.
4. Дана функция. Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
200 руб.
Контрольная работа по дисциплине : Математический анализ Вариант №6
nastenakosenkovmailru
: 8 марта 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
Aleksandr1234
: 19 октября 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
50 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
Fatony
: 29 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
45 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант 6
barjel
: 14 апреля 2012
кр№1 2семестр вариант 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатным
60 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
barjel
: 29 ноября 2011
СибГУТИ
математический анализ
контрольная работа №1 вариант 6
1курс 1семестр
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:Уважаемый ХХХХХХХХХХХХХХ,
существенных
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Иннокентий
: 30 сентября 2019
Описание:
Вариант №6
1. Найти область сходимости степенного ряда (см. скрин)
2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин)
3. Начертить область на комплексной плоскости по данным условиям (см. скрин)
4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин)
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
400 руб.
Другие работы
Одноэтажный трехкомнатный жилой дом
GnobYTEL
: 16 июля 2015
Исходные данные для проектирования
Содержание:
Схема объемно-планировочного решения.
Место строительства: г. Владивосток
Фундамент: ленточный монолитный
Стены: монолитные бетонные
Перекрытия: по деревянным балкам
Стропильные системы: брусчатые
Кровля: кровельная сталь
Подвал: под всем зданием
Основание фундаментов песчаные грунты
Уровень грунтовых вод: 1,0 м.
Уклон земной поверхности: 3,0 %
Перечень графического материала:
Главный и боковой фасады М 1:50
План этажа М 1:50
Поперечный разрез М 1:
440 руб.
Лабораторная работа №2. 8 вариант ЧАСТОТНО-ТЕРРИТОРИАЛЬНОЕ ПЛАНИРОВАНИЕ СЕТИ GSM
ARTEM1343
: 22 февраля 2023
Задание к лабораторной работе
1. Выбрать для рассмотрения территорию города, в котором Вы проживаете.
2. Расчет произвести на двух частотах сети GSM: 900 и 1800 МГц.
3. Определить радиус соты для выбранной территории.
4. Исходные данные:
- допустимый процент блокировок вызовов в сети базовых станций (2%);
- прогноз числа абонентов и величины трафика в сети;
- выделенный частотный спектр (18 частот диапазона 900 МГц и 9 частот диапазона 1800 МГц);
- удельная нагрузка одного абонента в ЧНН (0,01
600 руб.
Университет «Синергия» Психодиагностика (Темы 1-5 Промежуточные, Итоговый и Компетентностный тесты)
Synergy2098
: 7 апреля 2025
Университет «Синергия» Психодиагностика (Темы 1-5 Промежуточные, Итоговый и Компетентностный тесты)
Московский финансово-промышленный университет «Синергия» Тест оценка ОТЛИЧНО
2025 год
Ответы на 107 вопросов
Результат – 97 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
Подробная информация
Учебные материалы
Текущие
Введение в курс
Тема 1. История психодиагностики
Тема 2. Психометрические основы психодиагностики
Тема 3. Классификация методов психодиагностики
Тема 4. Логик
298 руб.
Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам
alfFRED
: 25 сентября 2013
Произведен вывод нелинейной системы дифференциальных уравнений в частных производных для расчета давления и скорости движения воздуха по воздуховодам при его нестационарном квадратичном движении. При этом использованы: формула Дарси-Вейсбаха – формула потерь давления на трение; второй закон Ньютона для определения инерционных потерь давления и уравнение неразрывности движения потока воздуха. Приведен пример расчета неустановившегося расхода воздуха в коротком воздуховоде при подаче на его вход п
10 руб.