Контрольная работа по дисциплине: «Математический анализ». Вариант №6

Цена:
400 руб.

Состав работы

material.view.file_icon F1C02503-B3A2-4178-AEFD-514BCA33E201.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arctg(xy^2); A(2;3), a(4;-3)

2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^6=a^2(x^4-y^4)

3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, 4z=y^2, 2x-y=0, x+y=9

4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(2x+4y+3z)k; 3x+2y+3z-6=0

Дополнительная информация

Оценка - отлично!
Контрольная работа по дисциплине Математический анализ. Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. 3. Исследовать методами дифференциального исчисления функцию
User wertystn : 28 января 2019
70 руб.
Контрольная работа по дисциплине Математический анализ. Вариант №6
Контрольная работа по дисциплине «Математический анализ» Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5. Найти неопределенные интегралы
User Nadyuha : 15 декабря 2016
200 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Контрольная работа по дисциплине : Математический анализ Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User nastenakosenkovmailru : 8 марта 2015
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User Aleksandr1234 : 19 октября 2014
50 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User Fatony : 29 сентября 2012
45 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант 6
кр№1 2семестр вариант 6 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле и плоскость (P): , которая совместно с координатным
User barjel : 14 апреля 2012
60 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
СибГУТИ математический анализ контрольная работа №1 вариант 6 1курс 1семестр Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: Рецензия:Уважаемый ХХХХХХХХХХХХХХ, существенных
User barjel : 29 ноября 2011
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Описание: Вариант №6 1. Найти область сходимости степенного ряда (см. скрин) 2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин) 3. Начертить область на комплексной плоскости по данным условиям (см. скрин) 4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин) 5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
User Иннокентий : 30 сентября 2019
400 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Колесо приводное - 31.000 СБ
Аксарин П. Е. Чертежи для деталирования. Задание 31. Колесо приводное. Деталирование. Сборочный чертеж. Модели Приводное колесо подкрановой тележки получает движение от электродвигателя через редуктор и зубчатое колесо 2 и приводит в движение тележку. Колесо закреплено на оси двумя роликоподшипниками. Защищают последние от загрязнения крышки с сальниковыми устройствами. Смазка подшипников осуществляется периодически через масленку 14. Ось 6 удерживается в раме от вращательного и осевого смещени
User .Инженер. : 26 апреля 2024
170 руб.
Колесо приводное - 31.000 СБ promo
Теоретическая механика
Шпаргалки по теоретической механике составлены преподавателем с большим опытом работы. На 3 страницах: формулы, определения и краткие пояснения. Рассмотрены все три раздела: статика, кинематика, динамика. Шпаргалки выполнены в Worde, формулы хорошо читаются, полезны не только на экзамене, но и при подготовке к нему.
User svkspb : 29 августа 2009
Исследование доходов бюджета города и усовершенствование механизма формирования местных бюджетов
В Украине существуют давние традиции самоорганизации жизнедеятельности городов и сел. На современном этапе деятельности украинского государства важное значение имеют перспективы реформ в системе саморегулирования. Особенного внимания заслуживает именно местное самоуправление. Являясь по своей сущности не государственной, а гражданской формой организации власти, самоуправление выступает мощным фактором повышения эффективности управления экономическими и социальными процессами развития территорий.
User alfFRED : 4 января 2014
10 руб.
Митне законодавство в системі державного регулювання зовнішньоекономічної діяльності
Економічні відносини України з іншими державами регулюються відповідними міжнародними договорами та нормами міжнародного права. Україна укладає, виконує і денонсує міжнародні договори з питань зовнішньоекономічної діяльності, а також договори, які стосуються таких питань, відповідно до Конституції України та законів України. Якщо міжнародним договором України встановлено інші правила, ніж ті, що містяться у Митному кодексі України та інших актах законодавства України про митну справу, то засто
User Qiwir : 28 декабря 2013
5 руб.
up Наверх