Теория вероятностей, математическая статистика и случайные процессы. Контрольная работа. Вариант 4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
P=0.7 K=5
Задача 2
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5, L=2, M=4, N=4, P=3, R=4
Задача 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=7, P=0.6, R=2
Задача 4
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
a=0, b=4, F(x)=2cx, α=1, β=2, p=0.6
Задача 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
λ=0,3
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
P=0.7 K=5
Задача 2
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5, L=2, M=4, N=4, P=3, R=4
Задача 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=7, P=0.6, R=2
Задача 4
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
a=0, b=4, F(x)=2cx, α=1, β=2, p=0.6
Задача 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
λ=0,3
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей, математическая статистика и случайные процессы
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 02.02.2014
Рецензия:Уважаемый
Разинкина Татьяна Эдуардовна
Оценена Ваша работа по предмету: Теория вероятностей, математическая статистика и случайные процессы
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 02.02.2014
Рецензия:Уважаемый
Разинкина Татьяна Эдуардовна
Похожие материалы
Контрольная работа по Теории вероятностей математическая статистика и случайные процессы. Вариант 4
pbv
: 14 февраля 2016
Задача №1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,7 k=5 ...
Задача №2. В одной урне K=5 белых шаров и L=2 чёрных шаров, а в другой – M=4 белых и N=4 чёрных...
Задача №3. В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P....
Задача №4. Непрерывная случайная величина задана ее функцией распределения...
Задача №5. Продолжительность теле
100 руб.
Теория вероятностей математическая статистика и случайные процессы. Контрольная работа. Вариант №4.
zhekaersh
: 20 марта 2015
1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
p=0,7
k=5
2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5
L=2
M=4
N=4
P=3
R=4
3. В типографии имеется K печатных машин. Для ка
100 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Другие работы
Лабораторная работа №3 По дисциплине: Основы схемотехники Исследование интегратора и дифференциатора на основе операционного усилителя
pvv1962
: 5 апреля 2015
вариант 3.Исследование интегратора и дифференциатора на основе операционного усилителя
1.Цель работы:
Исследовать свойства и характеристики схем интегратора и дифференциатора на основе операционного усилителя (ОУ).
2.Принципиальная схема интегратора
Интегратором называется устройство, выходное напряжение которого пропорционально площади под кривой входного сигнала.
3. Исследование АЧХ схемы интегратора
3.1 Исследование АЧХ при R2 = 10 кОм
3.2 Исследование АЧХ при R2 = 100 кОм
4.Иссл
75 руб.
Реферат на тему: «Приложение высшей математики: потеря тепла в окружающую среду»
fantasia13
: 9 июня 2012
Теория теплопередачи, или теплообмена, представляет собой учение о процессах распространения теплоты в пространстве с неоднородным полем температур.
Существуют три основных вида теплообмена: теплопроводность, конвекция и тепловое излучение.
Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).
Ко
Контрольная работа по дисциплине: Химия. Вариант 02
Учеба "Под ключ"
: 22 июля 2022
2. Определите массу: а) 0,1 моль NaOH; б) 2 моль HCl; в) 1 моль H2SO4.
12. Напишите электронные формулы атомов фосфора и ванадия. Распределите электроны этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?
22. Газообразный этиловый спирт C2H5OH можно получить при взаимодействии этилена С2Н4(Г) и водяных паров. Напишите термохимическое уравнение этой реакции, вычислив ее тепловой эффект.
32. При какой температуре наступит равновесие системы:
4H
800 руб.
Теплотехника 21.03.01 КубГТУ Задача 3 Вариант 28
Z24
: 24 января 2026
По стальному трубопроводу длиной 100 м, наружным диаметром d и толщиной стенки δ со скоростью ω движется метан с температурой tж1. Трубопровод покрыт изоляционным материалом с коэффициентом теплопроводности λиз = 0,07 Вт/(м·К). Температура окружающей среды (воздуха) – tж2. Коэффициент теплоотдачи от поверхности изоляции в окружающую среду – α2.
Определить тепловой поток, проходящий через трубопровод, и диаметр изоляции, при котором температура её наружной поверхности tиз = 40ºС.
200 руб.