Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №4. Семестр 4

Цена:
250 руб.

Состав работы

material.view.file_icon
material.view.file_icon Экзамен.doc
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
См.вложение 1

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
См.вложение 2

Дополнительная информация

Работа была сдана на "отлично в 2013г.
Преподаватель: Галкина М.Ю.
Теория сложности вычислительных процессов и структур. Экзаменационная работа. Билет 4.
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User Bodibilder : 29 мая 2019
30 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0 2)
400 руб.
promo
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User Roma967 : 8 января 2024
350 руб.
promo
Экзаменационная работа по курсу: Теория сложностей вычислительных процессов и структур. Экзаменационный билет № 4
Задача 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин Задача 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность
User JulDir : 4 февраля 2012
39 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User nik200511 : 27 мая 2019
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User zhekaersh : 6 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 0 0 1 0 5 0 0 10 6 7 1 10 0 12 4 0 6 12 0 3 5 7 4 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масс
User sun525 : 10 ноября 2014
30 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User nik200511 : 7 июля 2014
46 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Тест по маркетингу, зачет
Маркетинг – это: A. Тщательно изучать нужды и потребности покупателей. B. Производить то, что нужно потребителю и продавать. C. Продавать то, что уже произведено без учёта потребностей. Маркетинг представляет собой систему: A. Производственную. B. Сбытовую. C. Производственно – сбытовую....
User galaxyR : 18 августа 2015
50 руб.
ЭКЗАМЕН по дисциплине “Основы построения телекоммуникационных систем и сетей”
Билет №17 1. Характеристики коммутационных систем. Распределение Эрланга. 2. Принцип радиорелейной связи. Типы радиорелейных станций. 3. Определение понятий «Взаимоувязанная сеть связи», «первичная сеть связи», «вторичная сеть связи».
User sd80 : 27 января 2015
250 руб.
Многокритериальная оптимизация в принятии решений: постановка задачи, методы решения - Контрольная работа по дисциплине: Исследование операций. Вариант №2
Вариант №3 ТЕМА: Многокритериальная оптимизация в принятии решений: постановка задачи, методы решения ------------------------------------------------------------------------------ Содержание работы: Введение 1. Сущность МКО и его принципы 2. Постановка задачи МКО 3. Методы решения многокритериальных задач Заключение Список использованных источников =============================================
User IT-STUDHELP : 7 декабря 2023
450 руб.
promo
ИГ.03.18.01 - Призма с вырезом
Все выполнено в программе КОМПАС 3D v16 Вариант 18 ИГ.03.18.01 - Призма с вырезом Построить три проекции геометрического тела. Показать линии невидимого контура. В состав работы входят пять файлов: - 3D модель геометрического тела, расширение файла *.m3d (для открытия требуется программа компас не ниже 16 версии); - чертеж формата А3 в трёх видах с сохранением всех линий построения, все проекции вершин призмы обозначены буквами, вершин выреза - цифрами, расширение файла *.cdw (для открытия тр
100 руб.
ИГ.03.18.01 - Призма с вырезом
up Наверх