Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №2
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 2
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 2
Дополнительная информация
Год сдачи - 2013, зачет
Галкина М.Ю.
Галкина М.Ю.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №2.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
Данные считать из файла.
40 руб.
Лабораторная работа № 4 по курсу: “Теория сложностей вычислительных процессов и структур”. Вариант - 2.
Doctor_Che
: 9 февраля 2012
Номер варианта: 2.
Задание на лабораторную работу: “Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры”.
Условие задачи:
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет)
35 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Лабораторная работа №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вариант 3
23 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
40 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Bodibilder
: 29 мая 2019
Лабораторная работа №4
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирае
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
gnv1979
: 29 мая 2017
Лабораторная 4.
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 0 0 23 0 0
0 0 0 0 2 0
0 0 0 0 27 0
45 руб.
Другие работы
Лабораторная работа №3 по дисциплине: Теория связи. Вариант 10
Учеба "Под ключ"
: 17 июля 2022
Лабораторная работа №3
«Исследование корректирующего кода»
1. Задание на лабораторную работу
1.1 Ознакомиться с интерфейсом программы и схемами кодера и декодера при (n,k)=(7,4).
1.2 Задать исходную комбинацию на входе кодера циклического кода (7,4) и произвести кодирование.
1.3 Затем в канале указать ошибки в любых битах получившейся в результате кодирования комбинации.
1.4 Произвести декодирование получившейся комбинации с ошибкой, с помощью декодера и сравнить с исходной.
2. Ознакомление
400 руб.
Зачетная работа по предмету «Информационные системы в экономике»
Samolyanova
: 26 января 2018
Что такое база данных и база знаний: назначение, функции, примеры использования.?
250 руб.
Контрольная работа №1. 2-й семестр. 5-й вариант. Дополнительные главы математического анализа
Vitaly1972
: 10 апреля 2014
1. Исследовать сходимость числового ряда.
2.Найти интервал сходимости степенного ряда.
3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
4. Разложить данную функцию f(x) в ряд Фурье
5. Найти общее решение дифференциального уравнения.
50 руб.
Частотная манипуляция с минимальным сдвигом
novikova9409
: 26 февраля 2019
Лабораторная работа 2 Цель работы: Исследовать временные и спектральные характеристики методов цифровой модуляции сигнала. Сравнить методы частотной манипуляции MKS и GMKS.
Задание: сравнить временные и частотные характеристики частотно-манипулированных сигналов MKS и GMKS:
- спектральную плотность мощности (блоки Spectrum Analyzer);
- глазковые диаграммы для оценки межсимвольной интерференции (блоки Eye Diagram);
- переданную и принятую информационные последовательности (блоки Time Scope) для
50 руб.