Страницу Назад
Поискать другие аналоги этой работы
200 Контрольная работа по дисциплине: Дискретная математика. Вариант №17ID: 148151Дата закачки: 16 Декабря 2014 Продавец: nckl (Напишите, если есть вопросы) Посмотреть другие работы этого продавца Тип работы: Работа Контрольная Форматы файлов: Microsoft Office Описание: Вариант 17 №1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\\B) \\ (AÇ C) = (A\\C) \\ B б) AÍ B, CÍ D Þ A´ C Í B´ D. №2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A´ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(b,4),(b,3),(b,1),(b,2),(c,2)}; P2 = {(1,1),(1,3),(2,4),(3,1),(3,3),(4,2)}. №3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í Z2, P = {(x,y) | 5·x = 2·y}. №4 Доказать утверждение методом математической индукции: (9n+1 – 8·n – 9) кратно 16 для всех целых n ³ 0. №5 Компания из 8 человек поехала на охоту. Для организации ужина и ночлега нужно настрелять дичи, заготовить дрова и развести костер, приготовить еду, навести порядок в домиках. Для выполнения всех этих дел им необходимо разбиться на группы “охотники”, “костровые”, “повара”, “домоустроители”. Сколько существует различных способов такого разделения, если в каждую группу не должно входить менее 2 человек? Сколько существует различных способов разместиться на ночлег по трем совершенно одинаковым домикам? №6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 7, 15, 30? б) делящихся ровно на одно из этих трех чисел? №7 Найти коэффициенты при a=x4·y4·z2, b=x3·y2·z, c=y8·z2 в разложении (x2+5·y2+4·z)6. №8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 8·an+1 + 7·an = 0· и начальным условиям a1= –24, a2=18. №9 Орграф задан матрицей смежности. Необходимо: а) нарисовать граф; б) выделить компоненты сильной связности; в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). №10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v5 до остальных вершин графа, используя алгоритм Дейкстры. Комментарии: Работа зачтена 02.2014 Размер файла: 468 Кбайт Фаил: (.doc) ------------------- Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные! Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку. Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот. -------------------
Скачано: 6 Коментариев: 0 |
||||
Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них. Опять не то? Мы можем помочь сделать! Некоторые похожие работы:Контрольная работа по дисциплине: Дискретная математика. Вариант №17Теория вероятностей и математическая статистика. Учебно-методическое пособие Контрольная работа. Дисциплина: Дискретная математика. Вариант 17 Дискретная математика (Контрольная работа. Вариант №3) Ещё искать по базе с такими же ключевыми словами. |
||||
Не можешь найти то что нужно? Мы можем помочь сделать! От 350 руб. за реферат, низкие цены. Спеши, предложение ограничено ! |
Вход в аккаунт:
Страницу Назад
Cодержание / Дискретная математика / Контрольная работа по дисциплине: Дискретная математика. Вариант №17
Вход в аккаунт: