Контрольная работа по дисциплине. Математический анализ (часть 2). Вариант №4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Оценка работы: Зачет
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Вариант №4. Математический анализ (Часть 2)
MK
: 18 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3.Вычислить криволинейный интеграл по координатам
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
150 руб.
Дисциплина «Математический анализ». Часть 2-я. Вариант № 4
lllog
: 25 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где – дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
200 руб.
Контрольная работа По дисциплине: Математический анализ, вариант №4
ннааттаа
: 23 августа 2017
Задание 1. Найти пределы функций
Задание 2. Найти значение производной данной функции в точке х=0;
Задание 3. Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4. Найти неопределенные интервалы:
Задание 5. Вычислить площадь области, заключенных между линиями;
300 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Елена22
: 5 мая 2016
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
f(x)=4x/4+x^(2)
Задача 2. Найти неопределенные интегралы (см. скрин):
Задача 3. Вычислить площади областей, заключённых между линиями:
y=x^(2)-2; y=2x-2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Задание 1 .Найти пределы функций:
Задание 2 .Найти значение производной данной функции в точке х=0;
Задание 3.Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4 .Найти неопределенные интервалы:
Задание 5. Вычислить площадь области , заключенных между линиями;
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (2сем.)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 27.01.2014
Рецензия:Уважаемый Муравьев Павел Евгеньевич, вы справились со всеми заданиями "Зачёт"
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченн
100 руб.
Контрольная работа по дисциплине: «Математический анализ».Вариант №4
tehnikuvc
: 16 мая 2013
Вариант №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
80 руб.
Другие работы
Экзаменационная работа по дисциплине: Математический анализ (2 сем.). Билет №9
SybNet
: 22 сентября 2012
Экзамен по предмету Математический анализ 2 семестр 09 билет
СибГУТИ, Дистанционное обучение.
Вопрос №1: Скалярное поле, линии и поверхности уровня, производная по направлению.
Задача №2: Вычислить объём тела, ограниченного поверхностями
Задача №3: Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку .
Задача №4: Вычислить поток векторного поля через поверхность : , .
Задача №5: Применяя формулу Стокса, вычислить циркуляцию вект
100 руб.
Государство в политической системе общества
alfFRED
: 30 августа 2013
С О Д Е Р Ж А Н И Е
Государство как основной институт политической власти.
Причины его возникновения ……………………………………………
Формы государственного устройства и правления ………………….
Правовое государство и гражданское общество ……………………...
Список литературы ……………………………………………….………
Государство как основной институт политической власти.
Причины его возникновения.
Государство выступает в качестве основного средства осуществления политической власти. Это обстоятельство придает ему статус центрального инстит
10 руб.
Экзамен по физике. Билет №6
Amor
: 4 октября 2013
Задание 1
Камень бросили вниз с начальной скоростью 1 м/с. Какой путь пройдет тело за 3 с? Ускорение свободного падения принять равным 10 м/с.
Задание 2
На тело действуют две силы , . Чему равно максимальное и минимальное значение результирующей силы? Ответ сопроводить пояснениями и рисунком.
Задание 3
На рисунке 6.3.1 представлены четыре варианта взаимного расположения векторов силы, действующей на тело, и скорости тела. В каком случае работа силы будет отрицательной? Каков физический смысл о
250 руб.
Гидравлика ИжГТУ 2007 Задача 3.2 Вариант 4
Z24
: 17 октября 2025
Найти расход Q воды (ν=10-6 м²/c), подаваемый насосом с напором Нн из нижнего бака в верхний по трубопроводу длиной L, диаметром d, имеющему n резких поворотов.
Задачу решить методом последовательных приближений. Вид трубы взять из табл.3.1.
Найденный расход выразить в м³/c и д/c.
220 руб.