Контрольная работа по дисциплине. Математический анализ (часть 2). Вариант №4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Оценка работы: Зачет
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Вариант №4. Математический анализ (Часть 2)
MK
: 18 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3.Вычислить криволинейный интеграл по координатам
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
150 руб.
Контрольная работа По дисциплине: Математический анализ, вариант №4
ннааттаа
: 23 августа 2017
Задание 1. Найти пределы функций
Задание 2. Найти значение производной данной функции в точке х=0;
Задание 3. Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4. Найти неопределенные интервалы:
Задание 5. Вычислить площадь области, заключенных между линиями;
300 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Елена22
: 5 мая 2016
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
f(x)=4x/4+x^(2)
Задача 2. Найти неопределенные интегралы (см. скрин):
Задача 3. Вычислить площади областей, заключённых между линиями:
y=x^(2)-2; y=2x-2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Задание 1 .Найти пределы функций:
Задание 2 .Найти значение производной данной функции в точке х=0;
Задание 3.Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4 .Найти неопределенные интервалы:
Задание 5. Вычислить площадь области , заключенных между линиями;
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (2сем.)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 27.01.2014
Рецензия:Уважаемый Муравьев Павел Евгеньевич, вы справились со всеми заданиями "Зачёт"
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченн
100 руб.
Контрольная работа по дисциплине: «Математический анализ».Вариант №4
tehnikuvc
: 16 мая 2013
Вариант №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
80 руб.
Контрольная работа по дисциплине: Математический анализ, Вариант №4
tehnikuvc
: 15 января 2013
контрольная мат анализ 1 семестр 4 вариант
Задание 1 .Найти пределы функций
Задание 2 .Найти значение производной данной функции в точке х=0
Задание 3.Провести исследование функции с указанием
Задание 4 .Найти неопределенные интервалы
Задание 5. Вычислить площадь области , заключенных между линиями
75 руб.
Другие работы
Сложный разрез. Упражнение 45. Вариант 15а - Корпус
.Инженер.
: 5 сентября 2025
Б.Г. Миронов, Р.С. Миронова, Д.А. Пяткина, А.А. Пузиков. Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере. Изображения - виды, разрезы, сечения. Сложные разрезы. Упражнение 45. Вариант 15а - Корпус
Перечертить два вида деталей. Выполнить указанный разрез. Проставить размеры.
В состав работы входит:
Чертеж;
3D модель.
Выполнено в программе Компас + чертеж в PDF.
100 руб.
Экзамен по дисциплине: Теория вероятности и математическая статистика. Билет №5. семестр 3-й
DmitrTolmach
: 20 апреля 2017
Билет №5.
1. Нормальное распределение и его характеристики.
2. Имеется 5 одинаковых приборов, из которых 2 новых. Вероятность отказа нового прибора 0,05; старого – 0,3. Найти вероятность отказа случайно взятого прибора.
Решение:
3. Система (X,Y) имеет таблицу распределения:
4. Какова вероятность, что в четырехзначном номере есть один нуль?
5. Среднее число вызовов, поступающих на АТС в 1 мин., равно двум. Найти вероятность того, что за 4 мин поступит: а) 5 вызовов; б) менее пяти вызовов; в) бо
250 руб.
Контрольная работа №1 по дисциплине: «Введение в специальность». Тема реферата: «PR-деятельность отечественного бизнеса: основные тенденции развития». 14-й вариант
rostokw
: 20 января 2022
Контрольная работа
По дисциплине: «Введение в специальность»
Тема реферата: «PR-деятельность отечественного бизнеса: основные тенденции развития»
Проверила: Чуркина Наталья Анатольевна,
доцент, кандидат философских наук.
Новосибирск, 2020 г.
Содержание
ВВЕДЕНИЕ…………………………………………………………...…..2
I. История возникновения Public Relations……………….……….…....4
II. Тенденции развития Российского рынка PR услуг………….….…..6
III. Пиар смещает рекламу…………………………………………..…..10
IV. Основные тенденции развития…
500 руб.
Формирование единого экономического пространства на примере ЕС. Основные этапы, проблемы, пути их решения
Qiwir
: 26 июля 2013
I Что такое Европейский союз. 3
1. Формирование ЕС – этапы развития. 3
2. Управление ЕС: структура, полномочия,
порядок принятия решения. 5
3. Расширение ЕС. 10
II ЕС – член мирового сообщества. 12
1. ЕС как стимулятор интеграционных процессов.
5 руб.