Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 24.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 24.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Теория сложностей вычислительных процессов и структур, лабораторная работа № 3, вариант № 3
alexxxxxxxela
: 5 сентября 2014
Постановка задачи
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Вершина 2.
180 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №3
wchg
: 15 октября 2013
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по посл
79 руб.
Теория сложности вычислительных процессов и структур ЛАБОРАТОРНАЯ РАБОТА 3 вариант 4
svladislav987
: 23 августа 2023
Лабораторная работа No3
Решение задачи о рюкзаке методом динамического программирования
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, описание
используемого алгоритма, исходный текст программы (с указанием языка
реализации) и результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом
языке программирования).
Задание на лабораторную работу
Имеется склад, на котором пр
200 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 3. Вариант 10
Bodibilder
: 29 мая 2019
Лабораторная работа №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер вари
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 3. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №3. Вариант №5
gnv1979
: 29 мая 2017
Лабораторная 3.
Задание
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 10 17 8 0 12 19
10 0 1 0 7 0
45 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №5.
zhekaersh
: 2 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №3. Вариант №8.
zhekaersh
: 2 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
40 руб.
Другие работы
Экзаменационная работа по дисциплине: Базы данных. Билет № 12
IT-STUDHELP
: 16 апреля 2021
Билет № 12
1. Элементы пользовательского интерфейса
2. Нормализуйте таблицу.
Блюдо Про-дукт Количество Поставщик
продукта
Каша рисовая Рис 20 Цветной ры-нок
Каша рисовая Молоко 60 Колхоз
«Красные зо-ри»
Каша рисовая Сахар 5 Инской склад
3. Используя заданные схемы таблиц, сформулировать запрос, выводящий все занятия по матема-тике.
СТУДЕНТ (№зачётной книжки, фамилия, имя, группа, факультет)
ДИСЦИПЛИНА (№дисциплины, название, количество часов)
ЗАНЯТИЕ (№занятия,№дисциплины,№группы, дата, врем
500 руб.
Контрольная работа. Высшая математика (часть 2)
Dhtvc
: 14 октября 2020
Контрольная работа
По дисциплине: Высшая математика (часть 2) Вариант4
1. Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
2. Найти общее решение дифференциального уравнения.
3. Найти область сходимости степенного ряда.
4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
5. По заданным условиям, построить область в комп
400 руб.
Экзамен по дисциплине: Программирование на языках высокого уровня. Билет 1
Nosferato
: 5 сентября 2012
1. Структура программы на языке Си. Операторы ввода/вывода, форматный ввод/вывод.
2. Организовать меню: Создание файла, Просмотр файла, Поиск, Выход. В файле содержатся структуры с полями: № школы, район, адрес, количество учащихся. Вывести количество учащихся школ Октябрьского района.
150 руб.
Стратегический подход к управлению портфелем
evelin
: 21 декабря 2013
За достаточно долгую историю биржевой торговли накоплено большое количество разнообразных рекомендаций по рациональному поведению на бирже. Перед любым биржевым игроком, естественно, возникает вопрос о выборе рекомендаций, которых ему следует придерживаться. Проверка на собственном опыте нежелательна, так как потребует достаточно большого количества времени и может привести к серьезным потерям. Необходима методология априорного сравнения различных стратегий поведения на бирже. Под априорным пони
15 руб.