Контрольная работа №2 (Математический анализ) В-6
Состав работы
|
|
Описание
Вариант 3.6
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
Дополнительная информация
2014, СибГУТИ, Агульник О.Н., Зачет
Похожие материалы
Контрольная работа №2 по математическому анализу
Druzhba1356
: 22 сентября 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
40 руб.
Контрольная работа №2 по Математическому анализу.
Udacha2013
: 26 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с
230 руб.
Контрольная работа №2 по математическому анализу
aragorn24
: 10 февраля 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
50 руб.
Математический анализ. Контрольная работа № 2
rawsik
: 8 апреля 2012
Семестр 2, Вариант 8
1. При помощи вычетов вычислить данный интеграл по контуру
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. Вычертить область плоскости по данным условиям:
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Математический анализ. Контрольная работа. 2-й вариант
jaggy
: 11 февраля 2016
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2) производную в точке А по направлению вектора a.
450 руб.
Контрольная работа №2. Специальные главы математического анализа
worknecro
: 9 сентября 2015
Задача 1.
Вычертить область плоскости по данным условиям:
Задача 2.
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
Задача 3.
При помощи вычетов вычислить данный интеграл по контуру.
150 руб.
"Математический анализ". Контрольная работа № 2. Вариант №5
fractal
: 10 марта 2015
Вариант No 5. Полное описание в приложенном рисунке.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+
100 руб.
Другие работы
Теплотехника ЮУрГАУ 2017 Задача 2 Цикл ДВС Вариант 8
Z24
: 5 декабря 2025
Идеальный цикл двигателя внутреннего сгорания с комбинированным подводом теплоты
Цикл осуществляется одним кг воздуха, как идеальным газом,
где R – газовая постоянная R = 287 Дж/(кг•К);
ср — удельная теплоемкость при постоянном давлении, ср =1009 Дж/(кг•К);
сυ — удельная теплоемкость при постоянном объеме, ср =721 Дж/(кг•К);
ε — степень сжатия ε = υ1/υ2;
λ — степень повышения давления λ = р3/р2;
ρ — степень предварительного расширения ρ = υ4/υ3.
Исходные данные принять по таблице 1
Зада
500 руб.
Техническая термодинамика Контрольная работа 1 Задача 43
Z24
: 26 ноября 2025
Определить приращение энтальпии вещества при изотермическом изменении давления от р1 = 0,1 МПа до р2 = 10 МПа, если вещество подчиняется уравнению состояния р(υ — b) = RT, где b = 1,7·10—3 м³/кг.
150 руб.
Лабораторные работы 1-2 по дисциплине: Физика (Часть 2). Вариант №33
IT-STUDHELP
: 3 июля 2023
Лабораторная работа 1
Тема: Изучение характеристик электростатического поля
Цель работы
1) Исследовать электростатическое поле
2) Графически изобразить сечение эквипотенциальных поверхностей и силовые линии для двух конфигураций поля.
3) Оценить величину напряженности электрического поля в трех точках
4) Определить направление силовых линий
------------------------------------------------------------------------------
Результаты эксперимента для варианта 1
Потенциал, В Координаты точек
№1 №
600 руб.
Жуков М.Ф. (ред), Неронов В.А., Лукашов В.П. и др. Новые материалы и технологии. Экстримальные технологические процессы
GnobYTEL
: 13 октября 2012
Новосибирск: Наука. Сибирское отделение, 1992. - 183 с.
Монография, обобщающая результаты работ по программе "Сибирь" (разд. "Новые материалы и технологии"), издана в трех книгах. в первой из них изложены перспективы развития методов получения дисперсных материалов, синтеза ультрадисперсных порошков тугоплавких соединений и алмазов, их свойства и области применения. Обсуждаются плазменные технологии получения азотной кислоты, утилизации органических отходов,обработки строительных и тугоплавких м
15 руб.