Математический анализ (часть 2). Контрольная работа №2. Вариант №5
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
а)Grad z в точке A
б)Производную в точке А по направлению вектора а
z=5x^2+6xy A(2;1),a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2 (〖3y〗^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0,y+z=2,x^2+y^2=4
4. Даны векторное поле F=xi+yj+zk и плоскость (р) A(x)+B(y)+C(z)+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s – основание пирамиды, принадлежащие плоскости (р); l-контур, ограничивающий S, n-нормаль к S, направленная вне пирамиды V. Требуется вычислить:
А) поток векторного поля F через поверхность S в направлении нормали
n.
Б) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности S с нормалью n.
В) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(2x+3y-3z)j; 2x-3y+2z-6=0
Найти:
а)Grad z в точке A
б)Производную в точке А по направлению вектора а
z=5x^2+6xy A(2;1),a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2 (〖3y〗^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0,y+z=2,x^2+y^2=4
4. Даны векторное поле F=xi+yj+zk и плоскость (р) A(x)+B(y)+C(z)+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s – основание пирамиды, принадлежащие плоскости (р); l-контур, ограничивающий S, n-нормаль к S, направленная вне пирамиды V. Требуется вычислить:
А) поток векторного поля F через поверхность S в направлении нормали
n.
Б) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности S с нормалью n.
В) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(2x+3y-3z)j; 2x-3y+2z-6=0
Дополнительная информация
Оценена работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 2
Оценка:Зачет
Агульник Владимир Игоревич
Вид работы: Контрольная работа 2
Оценка:Зачет
Агульник Владимир Игоревич
Похожие материалы
Математический анализ (часть 2-я). Вариант №5
5234
: 7 ноября 2016
Билет № 5
1. Дифференцирование неявно заданной функции и функции, заданной параметрически. Логарифмическое дифференцирование.
Решение:
Дифференцирование неявных функций
Пусть уравнение определяет как неявную функцию от .
а) продифференцируем по обе части уравнения , получим уравнение первой степени относительно ;
б) из полученного уравнения выразим .
Дифференцирование функций, заданных параметрически
Логарифмическое дифференцирование.
95 руб.
Математический анализ (часть 2-я). Контрольная работа, вариант №5
Vodoley
: 7 апреля 2019
Задания:
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
70 руб.
Математический анализ (часть 2). Контрольная работа. Вариант №5
ElenaA
: 6 марта 2016
Задание 1. Вычислить несобственный интеграл или доказать его расходимость
Задание 2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
Задание 3. Вычислить криволинейный интеграл по координатам
Задание 4. Найти общее решение дифференциального уравнения первого порядка
Задание 5. Решить задачу Коши
200 руб.
"Математический анализ". Контрольная работа № 2. Вариант №5
fractal
: 10 марта 2015
Вариант No 5. Полное описание в приложенном рисунке.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+
100 руб.
Математический анализ. Контрольная работа №2. Вариант №5
nastia9809
: 13 ноября 2013
Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
Grad z в точке A
Производную в точке А по направлению вектора а
z=5x^2+6xyA(2;1),a(1;2)
65 руб.
Контрольная работа №2 по математическому анализу. Вариант №5
romaneniii
: 2 апреля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
100 руб.
Математический анализ (часть 2-я) Контрольная работа. 2-й семестр
Uiktor
: 26 марта 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
189 руб.
Математический анализ (Часть 2-я), Контрольная работа, Вариант №2
artinjeti
: 6 января 2018
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа
Оценка:Зачет
Дата оценки: 15.12.2017
Ваша раб
60 руб.
Другие работы
Презентация - Енкаустіка
evelin
: 24 апреля 2013
Енкаустіка - техніка живопису, в якому єднальною речовиною фарб є віск.
Матеріали
Інструменти
Праска
Каутерій (стрижень)
Прийоми енкаустіки:
- розгладження;
- відтиснення;
- робота бічними сторонами праски;
- робота вістрям праски.
Малюнки для прикладу.
10 руб.
Курсовая работа. «Оптимизация норм точности деталей, узлов и агрегатов»
anderwerty
: 15 января 2016
Цифры зачетки 67.
Минобрнауки России
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
Ухтинский государственный технический университет
(УГТУ)
Кафедра метрологии, стандартизации и сертификации
Курсовая работа
«Оптимизация норм точности деталей,
узлов и агрегатов»
Введение
Раздел № 1. Актуальность, цели и задачи проекта оптимизации норм точностей деталей, узлов и агрегатов
Раздел № 2. Технологическая часть. Проектирование размерной цепи
100 руб.
Лабораторные работы №№4-6 по дисциплине: Теория электрических цепей (часть 2-я). Вариант №3
SibGOODy
: 22 марта 2018
Лабораторная работа №4
Тема: "Исследование реактивных двухполюсников"
1. Цель работы:
Исследование зависимости входного сопротивления реактивного двухполюсника от частоты.
2. Подготовка к выполнению работы
При подготовке к работе необходимо изучить теорию реактивных двухполюсников, методы их анализа и синтеза (параграфы 4.5 и 16.6 электронного учебника).
3. Экспериментальная часть
3.1. Соберем схему реактивного двухполюсника (см. рисунок 1), изображенного по 1-й форме Фостера.
Установим:
E = 1В,
1100 руб.
Инженерная графика. Задание №45. Вариант №5. Детали №1,2,3,4
Чертежи
: 26 марта 2020
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения.
Задание 45. Вариант 5. Задачи 1-4.
Тема: Проекционные виды.
Построить третью проекцию модели по двум заданным. Нанести размеры.
В состав работы входят 12 файлов:
– 4 3D модели деталей;
- 4 ассоциативных чертежа в трёх видах, а так же изометрия и диметрия с действительными коэффициентами (по одному для каждой 3D модели);
– 4 обычных чертежа в трёх видах, а так же изометрия с коэффициентом 1 и дим
150 руб.