Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №9
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 0 32 16
0 0 32 0 37
0 32 0 15 0
32 0 15 0 0
16 37 0 0 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 0 32 16
0 0 32 0 37
0 32 0 15 0
32 0 15 0 0
16 37 0 0 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
Дополнительная информация
Оценка - отлично!
Выполняю работы на заказ по различным дисциплинам. Пишите на почту: LRV967@ya.ru
Выполняю работы на заказ по различным дисциплинам. Пишите на почту: LRV967@ya.ru
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
SibGOODy
: 21 июля 2018
Билет №9
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 0 32 16
0 0 32 0 37
0 32 0 15 0
32 0 15 0 0
16 37 0 0 0
2. Оптимальным образом расставить скобки при перемножении матриц:
М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
350 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
IT-STUDHELP
: 29 декабря 2021
Билет No9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 21 27
2 4 14
3 7 24 52
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
380 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №9.
nik200511
: 18 декабря 2018
Билет №9
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
241 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
uliya5
: 14 апреля 2024
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
300 руб.
Экзамен по дисциплине "Теория сложности вычислительных процессов и структур" Билет №9
sonya555941
: 20 января 2016
Билет №9
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
250 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Учеба "Под ключ"
: 25 января 2026
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0
500 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Учеба "Под ключ"
: 16 июля 2025
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0 2)
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Другие работы
Гидравлика БГИТУ Задача 1.2 Вариант 24
Z24
: 8 декабря 2025
На поршень одного из сообщающихся сосудов, наполненных водой, действует сила Р1. Какую силу Р2 нужно приложить ко второму поршню, чтобы уровень воды под ним был на h выше уровня воды под первым поршнем? Диаметр первого поршня d1, второго d2 (рисунок 2).
150 руб.
Опора цепа привода балкона верхового БУ Ф320-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 10 июня 2016
Опора цепа привода балкона верхового БУ Ф320-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
297 руб.
Совершенствование локальной информационно-вычислительной сети организации
alfFRED
: 10 октября 2013
Введение
В наш век компьютерных технологий ни одна фирма не обходится без использования компьютеров. А если компьютеров несколько, то они, как правило, объединяются в локальную вычислительную сеть (ЛВС).
Компьютерная сеть - это система объединенных между собой компьютеров, а также, возможно, других устройств, которые называются узлами (рабочими станциями) сети. Все компьютеры, входящие в сеть соединены друг с другом и могут обмениваться информацией.
В результате объединения компьютеров в сеть
10 руб.
Чертёж Деталь Коронка бурового долота
leha.nakonechnyy.2016@mail.ru
: 11 июня 2025
Чертёж Деталь Коронка бурового долота-Деталь-Деталировка-Сборочный чертеж-Чертежи-(Формат Компас 3D -CDW, Autocad Autodesk-DWG, Adobe-PDF, Picture-Jpeg)-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
167 руб.