Теория сложности вычислительных процессов и структур. Экзамен. Билет №14.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №14
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. См. рисунок.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной. См. рисунок.
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. См. рисунок.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной. См. рисунок.
Дополнительная информация
Комментарии: отлично
2015
Галкина М.Ю.
2015
Галкина М.Ю.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Билет №14
IT-STUDHELP
: 7 июня 2020
Билет No14
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 25 31
2 3 12
3 7 26 52
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех ос
490 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
DArt
: 12 апреля 2022
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6.
LowCost
: 1 февраля 2022
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превыша
249 руб.
Другие работы
Лабораторная работа №3 по дисциплине: Архитектура информационных систем. Общий вариант. 2025г
MasterGammi
: 3 января 2026
Лабораторная работа 4.
Создание запросов и фильтров
Цель работы: научиться создавать запросы и фильтры в среде SQL Server
Management Studio.
Теоретические сведения
Запросы предназначены для связи одной или нескольких таблиц. Также
они могут осуществлять отбор отдельных полей из таблицы и производить
фильтрацию данных согласно условию, наложенному на одно или несколько
полей. Такие запросы называют фильтрами.
Для реализации запросов используют специальный язык запросов SQL
(Structured Q
199 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
pewpewlolpro
: 9 ноября 2018
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Метрология, стандартизация и сертификация в инфокоммуникациях
Вид работы: Лабораторная работа 2
Оценка:Зачет
2018 год
220 руб.
Управление проектами и техническая эксплуатация телекоммуникационных систем. Вариант №1
ToPool
: 3 января 2022
Бутенков В.В.
Вариант 1,11,21...
Исходные данные
1. Трасса ВОЛП: Новосибирск – Омск.
2. Оптический кабель: завод-изготовитель «Москабель-Фуджикура».
Курсовой проект предназначен для закрепления знаний по основным разделам курса, а также для контроля усвоения материала и программы курса.
Исходные данные для выполнения курсового проекта приведены в таблицах. Выбор варианта осуществляется по последней цифре номера пароля.
Выполненный курсовой проект представить для рецензирования до начала лабор
440 руб.
Источники загрязнения окружающей среды и способы очистки
alfFRED
: 11 марта 2013
От естественных источников в атмосферу поступает: пыль космическая (до 5 миллионов тонн в год), пыль вулканическая, пыль растительная, пыль от эрозий почвы, морская соль, дымы от пожаров, вулканические газы, газы от разложения растений и животных, газы от жизнедеятельности растений и животных... Особую роль играет атмосферная пыль. Она способствует конденсации паров воды и образованию осадковОсновными источниками антропогенного загрязнения атмосферы являются: теплоэнергетика, транспорт, промышле
5 руб.