Алгебра и Геометрия. 1-й семестр, вариант №3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
3. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин пирамиды
Найти:
a) уравнение плоскости ABC;
b) уравнение прямой AD;
c) угол между плоскостью ABC и прямой AD;
d) объём пирамиды АВСD.
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин пирамиды
Найти:
a) уравнение плоскости ABC;
b) уравнение прямой AD;
c) угол между плоскостью ABC и прямой AD;
d) объём пирамиды АВСD.
Дополнительная информация
зачёт
Похожие материалы
Контрольная работа. Алгебра и Геометрия. 1-й семестр, вариант №3
Bvz
: 6 сентября 2016
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
100 руб.
Контрольная работа "Алгебра и геометрия" 1-й семестр, вариант №3
Тупой студент
: 31 мая 2015
Зачет без замечаний
Контрольная работа "Алгебра и геометрия" 1 семестр, вариант №3
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медиа
100 руб.
Алгебра и геометрия. Зачет. 1-й семестр
mikkikikki
: 7 мая 2012
1. Определители второго и треьего порядка.
2. Смешанное произведение векторов.
3. Исследовать взаимное положение прямых, найти угол и расстояние между ними.
4. Найти расстояние от точки А(5;3) до фокусов эллипса, если большая полуось его равна 10, а эксцентриситет 0,8.
5. Найти матрицу, обратную матрице А = ...
100 руб.
Алгебра и геометрия, 1-й семестр. Вариант 9
0491
: 10 сентября 2014
Задача 1
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2
Даны координаты вершин пирамиды А1А2А3А4. Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) площадь грани А1А2А3;
4) уравнение плоскости А1А2А3 ;
5) объем пирамиды А1А2А3А4.
А1(1, 8, 2), А2(5, 2, 6), А3(5, 7, 4), А4(4, 10, 9)
200 руб.
Алгебра и геометрия. Вариант №7. 1-й семестр
yana1988
: 8 июня 2014
Вариант 7.
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) площадь грани А1А2А3;
4) уравнение плоскости А1А2А3.
5) объём пирамиды А1А2А3А4.
А1 ( 3; 5; 4), А2 ( 8; 7; 4), А3 ( 5; 10; 4), А4 ( 4; 7; 8).
40 руб.
Контрольная работа по алгебре и геометрии.1-й семестр
СибирскийГУТИ
: 26 декабря 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
х-2у+3z=6
2x+3y-4z=20
3x-2y-2z=6
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
70 руб.
Контрольная работа по алгебре и геометрии. 1-й семестр
ДО Сибгути
: 24 декабря 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
х-2у+3z=6
2x+3y-4z=20
3x-2y-2z=6
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
20 руб.
Алгебра и геометрия. 1-й семестр. Вариант №5
Efimenko250793
: 11 октября 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1(4; 2; 5), А2 (0; 7; 2), А3 (0; 2; 7), А4 (1; 5; 0)
50 руб.
Другие работы
Водоснабжение и канализация здания
GnobYTEL
: 24 января 2012
Исходные данные 3
Краткая характеристика системы водоснабжении. 4
Водопроводный ввод. 4
Водомерный узел. 4
Гидравлический расчет 5
Литература 7
1. Исходные данные
1. План типового этажа в масштабе 1:100
2. Генеральный план в масштабе 1:500 с указанием месторасположения соседних зданий, магистральных сетей водопровода и канализации. На магистральной сети канализации указано месторасположение городского канализационного колодца.
3. Число этажей n=2
4. Гарантийный напор в водопроводе
5. Глубина з
11 руб.
Тепломассообмен СЗТУ Задача 2 Вариант 07
Z24
: 30 января 2026
Железобетонная дымовая труба внутренним диаметром 800 мм и наружным диаметром 1300 мм должна быть футерована внутри огнеупором.
Определить толщину футеровки и температуру наружной поверхности трубы из условий, чтобы тепловые потери с одного погонного метра трубы не превышали ql, а температура внутренней поверхности трубы не должна превышать t2. Температура внутренней поверхности футеровки t1. Коэффициент теплопроводности футеровки λ1=0,838+0,001t, Вт/(м·К), коэффициент теплопроводности бетона
150 руб.
Реферат. Основы инфокоммуникационных технологий. Вариант №9. Мультимедиа. Зачем необходимы мультимедийные технологии. Терминалы мультимедиа.
neznaika
: 6 января 2015
Содержание
Введение
1. Мультимедиа
1.1. История появления мультимедиа технологии…………………………5
1.2. Способы использования мультимедиа технологий в различных сферах деятельности человека…………………………………………………..5
1.2.1. Маркетинговая функция………………………………………………….6
1.2.2. Образовательная функция………………………………………………..6
1.2.3. Научно-исследовательская функция……………………………………7
1.2.4. Развлекательная функция……………………………………………….7
1.3. Описание и основные возможности мультимедиа технологии………….8
100 руб.
Реферат по дисциплине: Финансы. Вариант №4
Елена22
: 3 мая 2016
Содержание
Введение
Глава 1. Сущность и методы финансового планирования
1.1 Понятие и принципы финансового планирования
1.2 Цели, этапы и методы финансового планирования
1.3 Роль и значение бюджетов в системе финансовых планов
1.3.1 Бюджетное устройство и бюджетная система
1.3.2 История бюджетной системы России
1.4 Бюджетное планирование, его сущность и задачи
Глава 2. Планирование централизованных финансов
2.1 Сводное финансовое планирование
2.2 Бюджетное прогнозирование
2.3 Разработка перспек
150 руб.