Контрольная работа по дисциплине: «Эконометрика». Вариант №11
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите не значимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите не значимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 04.12.2015
Полетайкин Алексей Николаевич
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 04.12.2015
Полетайкин Алексей Николаевич
Похожие материалы
Контрольная работа по дисциплине "Эконометрика"
ДО Сибгути
: 26 декабря 2015
Задание.
Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
•
150 руб.
Эконометрика. Контрольная работа. Вариант № 11.
h0h0l777
: 25 мая 2016
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регр
350 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных приведен ниже:
I Y X1 X2 X3
1 258,7424251 19,00014401 15,00062408 20,003034
2 278,1483375 15,00042731 7,001206603 28,00818065
3 317,0628785 23,00018563 1,000471387 26,99586761
4 317,2176894 23,99930969 -2,000672058 25,99638428
5 312,8286505 20,0009705 -4,99776773 31,00499145
6 320,6573656 27,00095
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 21
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии.
Фрагмент исходных данных (вариант 21):
I Y X1 X2 X3
1 254,0258612 26,99993506 -6,000751544 0,999628044
2 200,5911847 14,00039776 14,00032088 24,99863727
3 219,1684443 15,99944831 3,998535023 27,99876502
4 250,6468318 26,00101627 4,999294123 31,99315634
5 225,5263428 19,99907954 7,002824734 27,00623532
6 237,694
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №19
SibGOODy
: 28 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент исходных данных (первые 10 значений):
I Y X1 X2 X3
1 246,2355165 20,00017371 7,001488238 8,000799927
2 273,3560835 26,00078398 -3,000062405 7,001980093
3 225,8606823 16,00046735 1,000061458 28,99265482
4 237,439026 14,00086051 10,00057324 2,999145599
5 213,4838941 11,9995867 -3,000377192 25,00087718
6 21
800 руб.
Контрольная работа по дисциплине "Эконометрика". Вариант №10
flewaway
: 16 декабря 2017
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
250 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант 08
Учеба "Под ключ"
: 2 сентября 2017
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных (первые 10 значений):
1 318,0728729 22,99965362 11,00085486 5,000551289
2 276,9334471 16,99907239 1,999827017 20,00127117
3 279,689303 19,99938517 -7,999612688 33,9955015
4 296,3182596 26,00003921 -7,001002884 10,99840266
5 294,3997056 20,99950479 9,000853481 17,00397088
6 301,8690372 23,00008778
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №8
Елена22
: 14 марта 2017
Задание к контрольной работе
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной ре
300 руб.
Другие работы
Методы оценки эффективности инновационных проектов. Технологический трансфер
evelin
: 31 октября 2013
содержание
1. Методы оценки инновационного проекта. 3
1.1. Срок окупаемости инвестиций. 6
1.2.. Коэффициент эффективности инвестиций. 7
2. Технологический трансфер. 9
2.1. Польский опыт. 9
Список использованной литературы.. 15
1. Методы оценки инновационного проекта
Термины «инвестиции» и «инновации» тесно связаны между собой.
Под инновацией понимается нововведение (объект, процесс, метод и т.п.), внедренное в производство в результате проведенного научного исследования или сделанного о
10 руб.
Теплотехника СФУ 2017 Задача 1 Вариант 27
Z24
: 30 декабря 2026
Смесь, состоящая из М1 киломолей углекислого газа и М2 киломолей окиси углерода с начальными параметрами р1 = 5 МПа и Т1 = 2000 К, расширяется до конечного объема V2 = εV1. Расширение осуществляется по изотерме, по адиабате, по политропе с показателем n. Определить газовую постоянную смеси, её массу и начальный объем, конечные параметры смеси, работу расширения, теплоту процесса, изменение внутренней энергии, энтальпии и энтропии. Дать сводную таблицу результатов и анализ ее. Показать процессы в
280 руб.
Вставка в тексты документов графических объектов и формул
evelin
: 6 октября 2013
Лабораторная работа № 4
Тема: Вставка в тексты документов графических объектов и формул.
Цель: освоить технологии вставки в текст документов разных графических объектов. Приобрести навыки с формирования схем алгоритмов, математических формул и уравнений.
Назначение: практическое усвоение технологии вставки в текст документа разных графических объектов, созданных средствами Word и других дополнений MS Office.
Задания
1. Создать рабочий файл с именем „Рисунки и схемы” и разместить в нем ряд к
15 руб.