Лабораторные работы №№1-5 по вычислительной математике
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
3 семестр
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 0:
Вариант 1:
Вариант 2:
Вариант 3:
Вариант 4:
Вариант 5:
Вариант 6:
Вариант 7:
Вариант 8:
Вариант 9:
Пример нахождения интервалов изоляции действительных корней уравнения:
Найдем интервалы изоляции действительных корней уравнения . Для этого найдем производную функции и критические точки из условия .
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, ,
N – последняя цифра пароля.
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 0:
Вариант 1:
Вариант 2:
Вариант 3:
Вариант 4:
Вариант 5:
Вариант 6:
Вариант 7:
Вариант 8:
Вариант 9:
Пример нахождения интервалов изоляции действительных корней уравнения:
Найдем интервалы изоляции действительных корней уравнения . Для этого найдем производную функции и критические точки из условия .
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, ,
N – последняя цифра пароля.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Высшая математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Оценена Ваша работа по предмету: Высшая математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Похожие материалы
Лабораторные работы №№1-5 по дисциплине вычислительная математика
Юлия102
: 1 марта 2017
Вариант 1.
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количес
300 руб.
Лабораторные работы №№1-5 По дисциплине: Вычислительная математика
nmaksim91
: 9 февраля 2015
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фун
390 руб.
Лабораторные работы №№1-5 Вычислительная математика. Вариант №8
Lira1
: 17 марта 2014
Лабораторная работа №1. Интерполяция
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции , по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для
150 руб.
Лабораторная работа №1-5 по дисциплине: Вычислительная математика. Вариант №5
IT-STUDHELP
: 25 октября 2016
Лабораторная работа No1
Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значени
190 руб.
Лабораторные работы №1-5 по дисциплине Вычислительная математика. Вариант №1.
fominovich
: 19 июня 2016
1) Лабораторная работа №1. Интерполяция
2) Лабораторная работа №2. Решение систем линейных уравнений.
3) Лабораторная работа №3. Решение нелинейных уравнений.
4) Лабораторная работа №4. Численное дифференцирование.
5) Лабораторная работа №5. Одномерная оптимизация.
Во всех работах 1-ый вариант.
500 руб.
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №6
Учеба "Под ключ"
: 9 сентября 2017
Лабораторная работа No1
Интерполяция
Задание к работе
Известно, что функция f(x) удовлетворяет условию |f``(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интер
800 руб.
Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант №9.
teacher-sib
: 30 ноября 2016
Лабораторная работа No 1
Интерполяция.
Задание: Известно, что функция f(x) удовлетворяет условию |f"(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции
130 руб.
Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант 05.
freelancer
: 16 августа 2016
Лабораторная работа No1
Тема работы: Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вы
300 руб.
Другие работы
Измельчитель.-Рубительная машина
leha.se92@mail.ru
: 8 мая 2020
Измельчитель Обзорная информация-Обзорная информация-Рубительная машина
Автор изобретения: Мокрицкий Б.Я.
Патентообладатель: Гос. технический университет.
№112992/13 от 24 05 2000-Рубительная машина
Автор изобретения: Вихарёв С.Н.
Патентообладатель: Уральский государственный
лесотехнический университет.
№113345/22 от 07 04 2008-Рубительная машина для измельчения
древесины.
Автор изобретения: Сажников О.В.
Патентообладатель: Государственное унитарное предприятие
"Конструкторское бюро приборос
299 руб.
Контрольная работа по дисциплине: Схемотехника телекоммуникационных устройств (часть 1). Вариант 07
Сергей449
: 8 июня 2025
Содержание
Задание 3
1. Обоснование выбора типа усилительных элементов 4
1.1 Расчет рабочих частот усилителя 4
1.2 Выбор и обоснование схемы выходного каскада усилителя (ВКУ) 4
1.3 Выбор транзистора 5
1.4 Выбор режима работы транзистора ВКУ 7
1.5 Расчет стабилизации режима работы транзистора ВКУ 9
1.6 Расчет выходного каскада усиления по переменному току 11
1.7 Построение сквозной динамической характеристики и оценка нелинейных искажений в ВКУ 12
1.8 Выбор операционного усилителя и расчет принци
650 руб.
Экзаменационная работа по дисциплине: Криптографические методы защиты информации. Билет № 1
IT-STUDHELP
: 13 апреля 2021
Билет № 1
1. В системах с открытым (или несимметричным) ключом у абонентов ключ
а) вычисляется
б) доставляется по защищенным каналам связи
в) доставляется курьером
2. В системе Диффи-Хеллмана используется большое число Р, по модулю которого ведется вычисление ключа. Это число должно быть
а) простым
б) любыми целым
в) любым нечетным
3. Потоковый шифр можно применять для
а) генерирования случайных чисел
б) построения электронной подписи
в) блокового шифрования
4. Электронная подпись RSA б
350 руб.
Принципы внедрения экологического менеджмента на предприятиях легкой промышленности
Qiwir
: 19 марта 2013
Введение
Высокая загрязненность окружающей среды. Истощение запасов природных ресурсов. Ухудшение качества нашей среды обитания. Это мы слышим чуть ли не каждый день и уже успели привыкнуть к подобным сообщениям.
Однако, все чаще мы слышим и другое: система управления окружающей средой, экологическая безопасность продукции, ресурсосберегающие технологии, экологический имидж компании и т. п. Эти понятия еще мало знакомы населению, зато вызывают все больший интерес у производителей. Экологические
5 руб.