Экзамен. Билет №4. Алгебра и геометрия
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1 Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
2 Решить матричное уравнение , где
3 Даны векторы , , .
Найти .
4 Даны координаты вершин пирамиды
, , , .
Найти координаты точки пересечения плоскости с высотой пирамиды, опущенной из вершины на эту плоскость.
5 Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
2 Решить матричное уравнение , где
3 Даны векторы , , .
Найти .
4 Даны координаты вершин пирамиды
, , , .
Найти координаты точки пересечения плоскости с высотой пирамиды, опущенной из вершины на эту плоскость.
5 Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
Похожие материалы
Алгебра и геометрия. Экзамен. Билет №4
ANNA
: 13 мая 2017
Задание 1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2. Решить матричное уравнение
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Более подробно смотрите во вложенном скриншоте
250 руб.
Алгебра и геометрия. Билет №4
rai9247
: 19 апреля 2019
Дисциплина «Алгебра и геометрия»
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия, Билет 4
тантал
: 1 декабря 2017
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Экзамен gо дисциплине: Алгебра и геометрия. Билет № 4
ilin99
: 12 мая 2011
Экзамен
по дисциплине: Алгебра и геометрия
БИЛЕТ № 4
1. Формулы Крамера для решения систем линейных уравнений.
2. Уравнение линии на плоскости. Расстояние между точками. Деление отрезка пополам.
3. Найти острый угол между диагоналями параллелограмма, построенного на векторах
4. Найти уравнение линии центров окружностей:
5. Через точку пересечения прямых и провести прямую, делящую отрезок АВ, где А (4; 3), В (0; 1), пополам.
100 руб.
Алгебра и геометрия. Экзамен
pepol
: 28 января 2013
БИЛЕТ № 13.
1. Теорема Кронекера - Капелли.
Система линейных алгебраических.....
2. Взаимное расположение двух прямых в пространстве.
Взаимное расположение двух прямых в пространстве характеризуются следующими
3. Решить матричное уравнение:
200 руб.
Экзамен. Алгебра и Геометрия.
ivi
: 31 января 2012
1. Скалярное произведение векторов и его свойства.
Скалярным произведением векторов и называется число, равное произведению их модулей на косинус угла между ними:
2. Классификация кривых второго порядка.
Кривая второго порядка – это геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида , в котором по крайней мере один из коэффициентов отличен от нуля.
3. Найти значение матричного многочлена , если , где .
4. Найти уравнение плоскости, п
200 руб.
Алгебра и геометрия. Экзамен.
andrshap
: 31 мая 2010
1. Декартова система координат. Направляющие косинусы вектора.
2. Гипербола и её свойства.
3. Доказать, что векторы
образуют базис и найти координаты вектора в этом базисе.
4. Найти обратную матрицу для матрицы
5. Найти координаты фокусов эллипса, если его малая полуось равна 5, а эксцентриситет равен 12/13.
5 руб.
Экзамен по алгебре и геометрии
shpion1987
: 27 января 2010
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
1 курс «Алгебра и геометрия». Экзамен
БИЛЕТ № 20
1. Векторное произведение векторов, его свойства.
2. Преобразования системы координат на плоскости: параллельный перенос и поворот.
3. Решить уравнение , где
А = , В = .
4. Найти проекцию точки А (5;2;-1) на плоскость
5. Найти площадь параллелограмма, построенного на векторах и , где .
50 руб.
Другие работы
Повышение эффективности технологии разработки глубокозалегающего Тундрового месторождения Кольск
evelin
: 5 января 2014
Цель: Повышение эффективности технологии разработки глубокозалегающего Тундрового месторождения Кольской ГМК.
Идея работы: Отработка глубокозалегающих крутопадающих рудных тел Тундрового месторождения необходимо вести в восходяще-нисходящем порядке многостадийной системой разработки, при этом параметры схемы вскрытия и технологии очистной выемки руды в блоке необходимо определять на базе разработанных экономико-математических моделей для Тундрового месторождения Кольской ГМК.
Научная новизна:
15 руб.
Теория сложности вычислительных процессов и структур. Лабораторные работы №1-3. Вариант №8.
sibguter
: 20 января 2019
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла. Вывести ребра остова минимального веса в порядке их присоединения и вес остова. Номер варианта выбирается по последней цифре пароля.
Вариант 8
Матрица
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной бу
139 руб.
Лабораторные работы №1-5 По дисциплине: метрология, стандартизация и сертификация. Вариант №13.
freelancer
: 4 сентября 2016
Лабораторная работа No1.4
«Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями»
1. Цель работы.
Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.
2. Задание для подготовки к выполнению лабораторной работы.
Контрольная задача.
В но
200 руб.
Контрольная работа по математическому анализу. 2-й семестр. Вариант №10
Zenkoff
: 28 января 2014
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Задача No 4: Даны векторное поле F=Xi+Yj+Zk, l — контур, ограничивающий s;и плоско
49 руб.