Дискретная математика. Лабораторная работа №4, 1-й семестр. Все варианты
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.
Алгоритм построения бинарного кода Грея
Вход: n 3 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество “2” в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет “включаться” бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Дополнительно:
Предоставить пользователю возможность задать исходное множество путем перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.
Алгоритм построения бинарного кода Грея
Вход: n 3 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество “2” в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет “включаться” бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Дополнительно:
Предоставить пользователю возможность задать исходное множество путем перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Рецензия:Уважаемый
Бах Ольга Анатольевна
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Рецензия:Уважаемый
Бах Ольга Анатольевна
Похожие материалы
Дискретная математика (2-й семестр). Лабораторная работа №4. Без варианта
Aftalick
: 15 октября 2014
Задание. Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из
45 руб.
Лабораторная работа №4 по дисциплине: Дискретная математика. Вариант №2 (2-й семестр)
Amor
: 3 июня 2014
Задание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из
350 руб.
Лабораторная работа №4 по дисциплине: Дискретная математика. Генерация подмножеств (2-й семестр)
xtrail
: 9 февраля 2014
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постр
300 руб.
Дискретная математика. Лабораторная работа №4
Bodibilder
: 14 марта 2019
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
15 руб.
Дискретная математика. Лабораторная работа №4
sibguter
: 5 июня 2018
Тема: Генерация подмножеств
Задание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата в
49 руб.
Дискретная математика. Лабораторная работа № 4
alexxxxxxxela
: 5 января 2014
Лабораторная работа № 4
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве р
70 руб.
Дискретная математика, Лабораторная работа №4
GTV8
: 10 сентября 2012
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
250 руб.
Лабораторная работа № 4 по дискретной математике
migsvet
: 7 апреля 2012
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постро
100 руб.
Другие работы
Проект реконструкции моста через реку Аван на 135+860 км автомобильной дороги М-60 Уссури Хабаровск-Владивосток
Aronitue9
: 10 октября 2012
Введение.
Обоснование реконструкции моста.
Краткие сведения о существующем мосте.
Анализ результатов обследования моста.
Оценка грузоподъемности пролетного строения.
Разработка вариантов реконструкции сооружения.
Обоснование отверстия моста.
Варианты мостового сооружения.
Выбор целесообразного варианта с учетом технико-экономического обоснования.
Проектирование и расчет пролетного строения.
Сбор нагрузок и определение усилий в балках пролетного строения.
Расчет главных балок по I группе предельн
50 руб.
Последствия ядерных взрывов и аварий на АЭС
GnobYTEL
: 16 марта 2013
Из истории создания ядерного оружия
В 1894 г. Робер Сесил, бывший премьер-министр Великобритании, в своем обращении к Британской ассоциации содействия научному прогрессу, перечисляя нерешенные проблемы науки остановился на задаче: что же действительно представляет собой атом - существует он на самом деле или является лишь теорией, пригодной лишь для объяснения некоторых физических явлений; какова его структура.
В США любят говорить, что атом - уроженец Америки, но это не так.
На рубеже XIX и XX
Функциональное и логическое программирование. 3-й вариант
MayaMy
: 23 февраля 2019
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Функциональное и логическое программирование
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 31.12.2018
Рецензия:Уважаемая ,
замечаний нет.
Галкина Марина Юрьевна
450 руб.
РД 34.20.516-90. Методические указания по определению места повреждения силовых кабелей напряжением до 10 кВ
Qiwir
: 27 июня 2013
Настоящие Методические указания предназначены для инженерно-технического персонала электрических сетей и промышленных предприятий Минэнерго СССР, осуществляющего работы при поиске повреждений кабельных линий.
Рассмотрены как существующие в настоящее время, так и новые методы для быстрого и точного определения места повреждения.
Не распространяются на кабели связи.
5 руб.