Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No1
Дано:
Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , .
Задача No2
Дано:
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если .
Задача No3
Дано:
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , .
Задача No4
Дано:
Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть – основание пирамиды, принадлежащие плоскости ; – контур, ограничивающий ; – нормаль к , направленная вне пирамиды . Требуется вычислить:
1) поток векторного поля через поверхность в направлении нормали ;
2) циркуляцию векторного поля по замкнутому контуру непосредственно и применив теорему Стокса к контуру и ограниченной им поверхности с нормалью ;
3) поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Если , :
Дано:
Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , .
Задача No2
Дано:
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если .
Задача No3
Дано:
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , .
Задача No4
Дано:
Даны векторное поле и плоскость , которая совместно с координатными плоскостями образует пирамиду . Пусть – основание пирамиды, принадлежащие плоскости ; – контур, ограничивающий ; – нормаль к , направленная вне пирамиды . Требуется вычислить:
1) поток векторного поля через поверхность в направлении нормали ;
2) циркуляцию векторного поля по замкнутому контуру непосредственно и применив теорему Стокса к контуру и ограниченной им поверхности с нормалью ;
3) поток векторного поля через полную поверхность пирамиды в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Если , :
Дополнительная информация
Оценка: "отлично"
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ Вариант: 8
grumbler
: 14 ноября 2011
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный
100 руб.
Контрольная работа №2 по дисциплине: Дополнительные главы математического анализа. Вариант №8
Roma967
: 26 февраля 2015
Задание 1
Вычертить область плоскости по данным условиям: (см. скрин)
Задание 2
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см. скрин)
Задание 3
При помощи вычетов вычислить данный интеграл по контуру. (см. скрин)
350 руб.
Контрольная работа № 2 по дисциплине: «Дополнительные главы математического анализа». Вариант№ 8
verunchik
: 7 июля 2012
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
200 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
xtrail
: 12 апреля 2013
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
650 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
ДО Сибгути
: 10 февраля 2016
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
70 руб.
Другие работы
Основы теории цепей. Вариант №3. Лабораторная работа №2. Электрические цепи при гармоническом воздействии
CrashOv
: 24 февраля 2020
Лабораторная работа №2
По дисциплине: Основы теории цепей
Электрические цепи при гармоническом воздействии
Вариант 3
Цель работы:
Изучение электрических цепей, содержащих резисторы , индуктивности и емкости при гармоническом (синусоидальном) воздействии.
300 руб.
Разъем коаксиальный РК.35.00.00 ВО
coolns
: 24 июня 2019
Разъем коаксиальный чертеж общего вида
Разъем коаксиальный чертежи
Разъем коаксиальный деталирование
Разъем коаксиальный скачать
Разъем коаксиальный 3д модель
Разъем предназначен для присоединения коаксиального кабеля к радиотехническим узлам и блокам. Кабель вставляют через центральное отверстие специальной гайки 9 и головки 10. Внутреннюю жилу припаивают к штырю штекера 2, а экран к головке 10.
РК.35.00.00 ВО Разъем коаксиальный сборочный чертеж
РК.35.00.00 СП Разъем коаксиальный спецификаци
350 руб.
Плита. вариант 8
coolns
: 26 января 2023
ПЛИТА. ВАРИАНТ 8
Заменить вид сверху разрезом А-А.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
80 руб.
Основа физического самосовершенствования
Aronitue9
: 26 февраля 2013
Здоровье - бесценное достояние не только каждого человека, но и всего общества. При встречах, расставаниях с близкими и дорогими людьми мы желаем им доброго и крепкого здоровья так как это - основное условие и залог полноценной и счастливой жизни. Здоровье помогает нам выполнять наши планы, успешно решать основные жизненные задачи, преодолевать трудности , а если придется, то и значительные перегрузки. Доброе здоровье, разумно сохраняемое и укрепляемое самим человеком, обеспечивает ему долгую и
19 руб.