Контрольная работа по дисциплине: Эконометрика. Вариант №18.

Цена:
250 руб.

Состав работы

material.view.file_icon 8F6F8645-10C3-4DF8-8EEC-5DF20ACAA8FE.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;

Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.

1.1. Оцените параметры линейной регрессии МНК;

1.2. Оцените значимость каждого фактора в отдельности по t-критерию;

1.3. Оцените совместную значимость всех факторов по F-критерию;

1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);

1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);

Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.

2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат тестаи его интерпретация?

2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?

2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?

2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?

Дополнительная информация

Работа успешно зачтена.
Год сдачи 2015.
Контрольная работа по дисциплине "Эконометрика"
Задание. Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как: • Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар); • Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными); •
User ДО Сибгути : 26 декабря 2015
150 руб.
promo
Зачетная работа по дисциплине: Эконометрика. Вариант №18
Содержание 1. Задание (Вариант 18) 3 2. Исходные данные 4 3. Оценка параметров линейной регрессии 7 3.1 Результаты анализа, полученные программным способом 7 3.2 Проверка значимостиотдельных коэффициентов 7 3.3 Статистики уравнения 8 3.4 Другие возможности анализа оценок уравнения регрессии 9 4. Внесение поправок в модель регрессии 10 4.1 Результаты анализа, полученные программным способом 10 4.2 Проверка значимостиотдельных коэффициентов 10 5. Проверка значимости аргументов 13 Список использова
User Учеба "Под ключ" : 10 декабря 2016
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
Описание данных Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии Фрагмент данных приведен ниже: I Y X1 X2 X3 1 258,7424251 19,00014401 15,00062408 20,003034 2 278,1483375 15,00042731 7,001206603 28,00818065 3 317,0628785 23,00018563 1,000471387 26,99586761 4 317,2176894 23,99930969 -2,000672058 25,99638428 5 312,8286505 20,0009705 -4,99776773 31,00499145 6 320,6573656 27,00095
User SibGOODy : 31 августа 2018
800 руб.
promo
Контрольная работа по дисциплине: Эконометрика. Вариант 21
Описание данных Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии. Фрагмент исходных данных (вариант 21): I Y X1 X2 X3 1 254,0258612 26,99993506 -6,000751544 0,999628044 2 200,5911847 14,00039776 14,00032088 24,99863727 3 219,1684443 15,99944831 3,998535023 27,99876502 4 250,6468318 26,00101627 4,999294123 31,99315634 5 225,5263428 19,99907954 7,002824734 27,00623532 6 237,694
User SibGOODy : 28 августа 2018
800 руб.
promo
Контрольная работа по дисциплине: Эконометрика. Вариант №19
Описание данных Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии Фрагмент исходных данных (первые 10 значений): I Y X1 X2 X3 1 246,2355165 20,00017371 7,001488238 8,000799927 2 273,3560835 26,00078398 -3,000062405 7,001980093 3 225,8606823 16,00046735 1,000061458 28,99265482 4 237,439026 14,00086051 10,00057324 2,999145599 5 213,4838941 11,9995867 -3,000377192 25,00087718 6 21
User SibGOODy : 28 августа 2018
800 руб.
promo
Контрольная работа по дисциплине "Эконометрика". Вариант №10
Описание данных и задание Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии; Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания. 1.1. Оцените параметры линейной регр
User flewaway : 16 декабря 2017
250 руб.
Контрольная работа по дисциплине "Эконометрика". Вариант №10
Контрольная работа по дисциплине: Эконометрика. Вариант 08
Описание данных Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии Фрагмент данных (первые 10 значений): 1 318,0728729 22,99965362 11,00085486 5,000551289 2 276,9334471 16,99907239 1,999827017 20,00127117 3 279,689303 19,99938517 -7,999612688 33,9955015 4 296,3182596 26,00003921 -7,001002884 10,99840266 5 294,3997056 20,99950479 9,000853481 17,00397088 6 301,8690372 23,00008778
User Учеба "Под ключ" : 2 сентября 2017
800 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №8
Задание к контрольной работе Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии; Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания. 1.1. Оцените параметры линейной ре
User Елена22 : 14 марта 2017
300 руб.
promo
Моделювання управління запасами
Вступ Актуальність теми “Моделі управління запасами” обумовлена тим, що кожному торгівельному підприємству для здійснення своєї діяльності необхідні товарно-матеріальні запаси. Від кількості запасів залежать витрати підприємства на зберігання, замовлення, транспортування; також витрати пов’язані з недостачею запасів (дефіцитом), а ці затрати оцінити набагато складніше. Від усіх цих витрат залежить прибуток та рентабельність підприємства, тому дуже важливо вміти визначити оптимальний розмір запас
User GnobYTEL : 12 ноября 2012
15 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 9 Вариант 52
Пар — фреон — 12 при температуре t1 поступает в компрессор, где адиабатно сжимается до давления, при котором его температура становится равной t2, а степень сухости пара x2=1. Из компрессора фреон поступает в конденсатор, где при постоянном давлении обращается в жидкость при температуре кипения, после чего адиабатно расширяется в дросселе до температуры t4=t1. Холодопроизводительность установки Q. Определить: — холодильный коэффициент установки; — массовый расход фреона; — теоретичес
User Z24 : 20 декабря 2025
180 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 9 Вариант 52
Дискретная математика. Лабораторная работа 3 (2019). Для всех вариантов.
Лабораторная работа 3. Поиск компонент связности графа Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности. Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3). Пользователю должна быть пре
User nik200511 : 21 января 2020
33 руб.
Политические идеологии. Основные направления
РЕФЕРАТ Политические идеологии. Основные направления. Содержание Введение Уровни политической идеологии Структура и функции идеологии Основные идеологические течения в современном мире Либерализм и неолиберализм Консерватизм Социализм и коммунизм Фашизм Метафизические корни политических идеологий Полярно-райская идеология Идеология Творец - Творение Идеология Мистический Материализм Выводы Заключение Список литературы Введение. Характеристику политических идеологий невозможно начать без оценки
User evelin : 21 февраля 2013
10 руб.
up Наверх