Чертежи-Графическая часть-Дипломная работа-Компоновка низа колонны, Конструкция скважины, Патентно-информационный обзор, Плакат по видам износа, Винтовой забойный двигатель Д2-172М, Деталировка, Экономическая эффективность модернизации винтового забойного
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- AutoCAD или DWG TrueView
- Компас или КОМПАС-3D Viewer
Описание
Винтовой забойный двигатель является двигателем объемного типа, приводимый в действие потоком бурового раствора, который закачивается в бурильную колонну с поверхности насосами (рис. 1). Винтовой двигатель состоит из статора и эксцентрично расположенного винтового ротора, представляющего собой как бы зубчатую пару с внутренним зацеплением с винтовыми зубьями. Число зубьев статора на один больше зубьев ротора, что позволяет ротору совершать планетарное движение, как бы обкатываясь по зубьям статора, ось ротора при этом движется по окружности с диаметром, равным двойному эксцентриситету е. Для соединения ротора с валом шпинделя, соосно расположенного с корпусом, служит шарнирная муфта, компенсирующая эксцентриситет[1].
Шпиндель сходен по конструкции со шпинделем турбобура. Он укреплен на радиальных резинометаллических подшипниках и снабжен пятой для восприятия осевой нагрузки. Вал шпинделя пустотелый, в верхней части снабжен каналами для прохода жидкости к долоту, присоединяемому через переводник к нижней части вала двигателя. Корпус через переводник прикрепляется к нижней части бурильной ко-лонны.
1.1 Двигатели для наклонно направленного и горизонтального бурения
Обладая рядом конструктивных особенностей и рациональным критерием эффективности, двигатели, в отличие от турбобуров, эффективно используются в различных технологиях наклонно направленного и горизонтального бурения, в том числе при зарезке и бурении вторых(дополнительных) стволов через окно в эксплуатационной колонне.
При использовании ВЗД в горизонтальном бурении реализуются их преимущества по сравнению с турбобурами, в частности меньшая зависимость от диаметра, а так же повышенный удельный момент двигателя. Это позволяет сконструировать силовую секцию длиной 1 – 2 м. с наружным диаметром, существенно меньшим , чем у турбобуров для аналогичных целей.
Основные особенности двигателей серии ДГ:
уменьшенная длина, достигаемая сокращением как силовой, так и шпиндельной секции, при этом силовая секция, как правило, выполняется двухшаговой, что обеспечивает необходимую мощность и ресурс РО;
уменьшенный наружный диаметр (108 против 120 мм; 155 против 172 мм), что при сохранении оптимальных характеристик ВЗД обеспечивает надежную проходимость двигателя с опорно – центрирующими элементами в стволе скважины и улучшенную гидродинамическую ситуацию в затрубном пространстве;
многообразие механизмов искривления корпуса (жесткий искривленный переводник, регулируемый переводник, корпусные шарниры с одной или двумя степенями свободы) что позволяет использовать различные технологии проводки скважины;
возможность размещения на корпусе двигателя опорно – центрирующих элементов;
усовершенствованное соединение ротора и вала шпинделя, гарантирующее надежную работу с большими углами перекоса.
1.2 Рабочие органы винтового забойного двигателя
По принципу действия винтовые двигатели (рис. 2) относятся к объемным роторным машинам. Основными элементами рабочих органов таких машин являются:
1.Статор — это резинометаллическая деталь, состоящая из металлического корпуса и привулканизированной к нему резиновой обкладки. Внутренняя часть обкладки представляет собой зубчатый венец с винтовыми зубьями;
2.Ротор — представляет собой многозаходный винт с нарезкой специального профиля, выполняемый из конструкционной или нержавеющей стали.
При установке в статор ось ротора смещается относительно оси статора на величину эксцентриситета , равную половине высоты зуба. Применение резины в качестве материала обкладки статора позволяет компенсировать неизбежные погрешности изготовления ротора и статора по профилю, диаметрам, шагу винтовой линии и прямолинейности оси. Одновременно с этим создается необходимое уплотнение — натяг рабочей пары (для обеспечения объемного принципа работы гидравлической машины) вследствие некоторого превышения диаметральных размеров ротора над соответствующими размерами статора. Важно и то, что сочетание резины и металла позволяет достичь высокой износостойкости рабочей пары при использовании буровых растворов, содержащих абразивные частицы[2].
Шпиндель сходен по конструкции со шпинделем турбобура. Он укреплен на радиальных резинометаллических подшипниках и снабжен пятой для восприятия осевой нагрузки. Вал шпинделя пустотелый, в верхней части снабжен каналами для прохода жидкости к долоту, присоединяемому через переводник к нижней части вала двигателя. Корпус через переводник прикрепляется к нижней части бурильной ко-лонны.
1.1 Двигатели для наклонно направленного и горизонтального бурения
Обладая рядом конструктивных особенностей и рациональным критерием эффективности, двигатели, в отличие от турбобуров, эффективно используются в различных технологиях наклонно направленного и горизонтального бурения, в том числе при зарезке и бурении вторых(дополнительных) стволов через окно в эксплуатационной колонне.
При использовании ВЗД в горизонтальном бурении реализуются их преимущества по сравнению с турбобурами, в частности меньшая зависимость от диаметра, а так же повышенный удельный момент двигателя. Это позволяет сконструировать силовую секцию длиной 1 – 2 м. с наружным диаметром, существенно меньшим , чем у турбобуров для аналогичных целей.
Основные особенности двигателей серии ДГ:
уменьшенная длина, достигаемая сокращением как силовой, так и шпиндельной секции, при этом силовая секция, как правило, выполняется двухшаговой, что обеспечивает необходимую мощность и ресурс РО;
уменьшенный наружный диаметр (108 против 120 мм; 155 против 172 мм), что при сохранении оптимальных характеристик ВЗД обеспечивает надежную проходимость двигателя с опорно – центрирующими элементами в стволе скважины и улучшенную гидродинамическую ситуацию в затрубном пространстве;
многообразие механизмов искривления корпуса (жесткий искривленный переводник, регулируемый переводник, корпусные шарниры с одной или двумя степенями свободы) что позволяет использовать различные технологии проводки скважины;
возможность размещения на корпусе двигателя опорно – центрирующих элементов;
усовершенствованное соединение ротора и вала шпинделя, гарантирующее надежную работу с большими углами перекоса.
1.2 Рабочие органы винтового забойного двигателя
По принципу действия винтовые двигатели (рис. 2) относятся к объемным роторным машинам. Основными элементами рабочих органов таких машин являются:
1.Статор — это резинометаллическая деталь, состоящая из металлического корпуса и привулканизированной к нему резиновой обкладки. Внутренняя часть обкладки представляет собой зубчатый венец с винтовыми зубьями;
2.Ротор — представляет собой многозаходный винт с нарезкой специального профиля, выполняемый из конструкционной или нержавеющей стали.
При установке в статор ось ротора смещается относительно оси статора на величину эксцентриситета , равную половине высоты зуба. Применение резины в качестве материала обкладки статора позволяет компенсировать неизбежные погрешности изготовления ротора и статора по профилю, диаметрам, шагу винтовой линии и прямолинейности оси. Одновременно с этим создается необходимое уплотнение — натяг рабочей пары (для обеспечения объемного принципа работы гидравлической машины) вследствие некоторого превышения диаметральных размеров ротора над соответствующими размерами статора. Важно и то, что сочетание резины и металла позволяет достичь высокой износостойкости рабочей пары при использовании буровых растворов, содержащих абразивные частицы[2].
Дополнительная информация
1.3 Опоры винтовых забойных двигателей
Одним из важнейших узлов винтового забойного двигателя, в значительной степени определяющим его работоспособность, являются опоры. По роду воспринимаемых нагрузок опоры делятся на осевые и радиальные. Опоры выполняются на подшипниках скольжения (резинометаллические опоры) и подшипниках качения (только осевые опоры)[1].
На работоспособность осевых опор наибольшее влияние оказывают динамические нагрузки от продольных колебаний низа бурильной колонны. Источниками возбуждения этих на¬грузок являются работающее на забое долото, насосы и сам двигатель. На опоры действуют и поперечные силы, связанные как с ра¬ботой неуравновешенных вращающихся масс винтового забойного двигателя, так и с изменением характера проходимых пород, искривлением скважины и рядом других причин[1].
Основные нагрузки, действующие на опоры забойного двигателя, усилия в осевом направлении, поэтому наиболее нагружен осевой подшипник.
Длительность работы осевой опоры, как правило, определяет межремонтный период работы двигателя (его наработка на отказ). Радиальные опоры несут значительно мень¬шие нагрузки, поэтому их долговечность выше.
В процессе бурения на осевую опору двигателя действует результирующая сила
, (1.2.1)
где — гидравлическое усилие;
— вес вращающихся деталей, действующий сверху вниз;
— реакция забоя, действующая на опору снизу вверх.
При положительном значении усилие направлено сверху вниз, при отрицательном значении снизу вверх. Как показал опыт работы винтовых забойных двигателей с резинометаллической опорой, детали этой опоры больше изнашиваются от действия усилия, направленного сверху вниз.
На работу опор забойного двигателя отрицательно влияют промывочные жидкости с большим содержанием твердой фазы (особенно это относится к утяжеленным буровым растворам) и абразивных частиц. Последние, проникая в опоры, разрушают контактные поверхности и этим увеличивают темп износа опоры. На работу опор также влияет температура промывочной жидкости. Так, в резинометаллических опорах при повышении тем¬пературы жидкости сверх предела, допустимого для данной марки резины, снижаются как прочность самой резины, так и прочность крепления ее к металлическому остову опоры. Повышенная тем¬пература влияет и на долговечность опор качения — усиливается коррозийный износ.
1.3.1 Подшипники скольжения в забойных двигателях
Использование в забойных двигателях резинометаллических опор скольжения основано на способности эластичных подшипников эффективно работать при смазке жидкостью, содержащей абразивные частицы. Принцип работы такой опоры заключается в следующем. При соприкосновении двух трущихся поверхностей и наличие в смазывающей жидкости твердых частиц, последние неизбежно попадают между этими
поверхностями, если обе поверхности металлические, частицы внедряются в ту и другую поверхность, причем величина внедрения пропорциональна величине нагрузки на трущиеся поверхности. При скольжении одной поверхности по другой песчинки задирают и изнашивают обе поверхности. Поверхности изнашиваются тем быстрее, чем выше частота вращения детали и величина нагрузки. Если одна из трущихся поверхностей эластичная, например резиновая, то твердая частица, попадая между поверхностями трения, вдавливается в эластичную резиновую поверхность, не вызывая в ней остаточных деформаций. Сила прижатия частицы к металлу не зависит от величины нагрузки и определяется только упругостью резины. Следовательно, износ соприкасающейся с резиной металлической поверхности будет в этом случае значительно меньше[1].
Изготовление одного из элементов пары трения из эластичного материала, в качестве которого применяется резина, позволило создать опоры, которые отличаются простотой и высокой износостойкостью при работе в промывочных жидкостях с небольшим содержанием твердой фазы. Вследствие высокой эластичности резиновой поверхности компенсируются некоторые дефекты и неточности изготовления и сборки подшипника, повышается равномерность распределения осевой нагрузки по ступеням осевой опоры, несколько сглаживаются ударные нагрузки на элементы опоры.
1.3.2 Подшипники качения в забойных двигателях
Использование подшипников качения в качестве опор винтовых забойных двигателей обусловлено рядом их преимуществ по сравнению с резинометаллической опорой скольжения. Основное из этих преимуществ состоит в том, что подшипники качения позволяют уменьшить потери на трение в опорах и тем самым увеличить механический к. п. д. двигателя. Подшипники качения имеют значительно меньшие потери на трение при запуске (момент трогания) и при небольших частотах вращения.
С увеличением глубины бурения и ростом неравномерности передачи осевой нагрузки на долото, усложнением условий работы забойного двигателя и долота, повышением плотности и вязкости промывочной жидкости преимущества подшипников качения по сравнению с резинометаллическими опорами скольжения возрастают. Процесс чистого (или свободного) качения состоит в том, что поверхности взаимно перекатывающихся тел непрерывно меняют участки контакта без видимого скольжения. Однако в реальных условиях свободное качение наблюдается редко. Качение обычно сопровождается проскальзыванием одного контактирующего тела относительно другого. Такое проскальзывание особенно велико в бессепараторных подшипниках, что увеличивает трение скольжения между шариком и беговой дорожкой. Однако современные открытые подшипники гидравлических забойных двигателей конструируются без сепараторов. Это обусловлено тем, что отсутствие сепаратора позволяет увеличить диаметр шариков и их число, что, в свою очередь, повышает грузоподъемность подшипника. Это особенно важно в условиях ограниченных диаметральных габаритов забойного двигателя.
1.3.3 Сравнительная оценка осевых опор различных типов
Из сравнения возможностей осевых опор различных типов можно заключить следующее:
1.Резинометаллическая осевая опора эффективно работает при бурении с промывкой водой или маловязкими и глинистыми малозагрязненными растворами. В этих условиях она обладает высоким коэффициентом полезного действия и достаточной стойкостью.
2.Бурение с применением утяжеленных глинистых растворов лучше вести забойными двигателями с осевыми подшипниками качения, так как потери на трение в этих опорах в меньшей степени зависят от загрязненности промывочной жидкости.
3.Резинометаллическая осевая опора имеет низкие потери на трение при высоких частотах вращения (400—800 об/мин) и смазке водой или глинистым маловязким незагрязненным раствором. При высокой частоте вращения и применении абразивной жидкости износостойкость резинометаллической пяты выше долговечности опоры на подшипниках качения.
4.Коэффициент трения резинометаллической пяты существенно возрастает (в 2—3 раза и более) при уменьшении частоты вращения, поэтому целесообразно в забойных двигателях с низкими частотами вращения использовать осевую опору качения.
5.При бурении на больших глубинах и неравномерной передаче осевой нагрузки на двигатель с ростом плотности, вязкости и температуры промывочной жидкости преимущества опор качения по сравнению с резинометаллическими возрастают. В этих условиях в забойных двигателях следует применять опоры качения.
6.Применение резинометаллической опоры скольжения ограничено забойными температурами 110°С. Опоры качения не имеют температурных ограничений.
7.Эксплуатационные качества опор скольжения повышаются с увеличением диаметра забойного двигателя, так как при этом улучшаются характеристики трения и износа. Преимущества опор качения, наоборот, возрастают с уменьшением диаметра забойного двигателя.
1.4 Рабочий процесс винтового двигателя
Винтовые поверхности статора и ротора делят рабочий объем двигателя на ряд полостей. Полости, связанные с обла¬стями высокого и низкого давлений, называются камерами, а замкнутые полости — шлюзами. В поперечном сечении име¬ются камеры, разделенные между собой контактной линией. Каждая камера по мере вращения периодически связывается с полостями высокого и низкого давлений и в каждый задан-ный момент времени становится шлюзом. Теоретически на длине одного шага происходит разобщение полостей, находя¬щихся выше и ниже рабочих органов. Поверхности винтовых зубьев ротора и статора, взаимно пе¬ресекаясь, отсекают область высокого давления жидкости от области низкого давления и препятствуют свободному перетоку жидкости. Под действием перепада давления жидкости образуется вращающий момент, передаваемый на вал шпинделя. Чем больше перепад давления на двигателе, тем больше вращающий момент[1].
Рисунок 3. Кинематика рабочих органов винтового двигателя с различным числом зубьев:
— однозаходный, — двухзаходный, — трехзаходный,
и — оси ротора и ста¬тора,
— эксцентриситет, , ..., — точки контакта;
и — начальные окруж¬ности.
По принципу действия винтовой двигатель можно сравнить с поршневым гидравлическим дви¬гателем, снабженным поршнем, перемещающимся вдоль оси ро¬тора по винтовой линии. Роль поршня выполняют отсекающие поверхности винтового ротора. В каждом поперечном сечении кинематика рабочих органов характеризуется двумя начальными окружностями (рис. 3). В винтовых машинах ротор совершает планетарное движение. Смещение оси ротора относительно оси статора на¬зывается эксцентриситетом двигателя[2].
Однозаходный ротор не симметричен относительно центра своей начальной окружности. Сечение ротора представляет собой круг с центром , а сечение статора — овал, симметрич¬ный относительно точки . Винтовые двигатели с однозаходным ротором довольно просты по конструкции и поэтому ши¬роко применяются в различных отраслях промышленности[2].
Винтовые роторные двигатели имеют ряд преимуществ, что позволяет использовать их как забойные дви¬гатели:
1. отсутствие клапанных или золотниковых распределите¬лей потока жидкости;
2. отсутствие относительного перемещения трущихся дета¬лей пары ротор — статор;
3. непрерывное изменение положения линии контакта ра¬бочих органов при вращении ротора позволяет потоку бурового раствора удалять абразивные частицы из камер и шлюзов.
Условия создания шлюзов в паре ротор — статор объемных винтовых двигателей следующие:
а. число зубьев или заходов статора должно быть на еди¬ницу больше зубьев ротора ;
б. отношение шага зубьев статора к шагу зубьев ротора должно быть пропорционально отношению числу их зубьев, т. е.
(1.3.1)
Отношение чисел зубьев ротора и статора называется пере¬даточным отношением:
(1.3.2)
Теоретически винтовой двигатель может иметь любое пере¬даточное отношение. Двигатели с малозаходными винтовыми механизмами раз-вивают большие частоты вращения при небольшом вращающем моменте. По мере увеличения числа заходов ротора вращаю¬щий момент увеличивается и снижается частота вращения. Это объясняется тем, что винтовой механизм с многозаходным ро¬тором исполняет роль двигателя и одновременно редуктора, пе¬редаточное отношение которого пропорционально числу захо¬дов ротора.
Одним из важнейших узлов винтового забойного двигателя, в значительной степени определяющим его работоспособность, являются опоры. По роду воспринимаемых нагрузок опоры делятся на осевые и радиальные. Опоры выполняются на подшипниках скольжения (резинометаллические опоры) и подшипниках качения (только осевые опоры)[1].
На работоспособность осевых опор наибольшее влияние оказывают динамические нагрузки от продольных колебаний низа бурильной колонны. Источниками возбуждения этих на¬грузок являются работающее на забое долото, насосы и сам двигатель. На опоры действуют и поперечные силы, связанные как с ра¬ботой неуравновешенных вращающихся масс винтового забойного двигателя, так и с изменением характера проходимых пород, искривлением скважины и рядом других причин[1].
Основные нагрузки, действующие на опоры забойного двигателя, усилия в осевом направлении, поэтому наиболее нагружен осевой подшипник.
Длительность работы осевой опоры, как правило, определяет межремонтный период работы двигателя (его наработка на отказ). Радиальные опоры несут значительно мень¬шие нагрузки, поэтому их долговечность выше.
В процессе бурения на осевую опору двигателя действует результирующая сила
, (1.2.1)
где — гидравлическое усилие;
— вес вращающихся деталей, действующий сверху вниз;
— реакция забоя, действующая на опору снизу вверх.
При положительном значении усилие направлено сверху вниз, при отрицательном значении снизу вверх. Как показал опыт работы винтовых забойных двигателей с резинометаллической опорой, детали этой опоры больше изнашиваются от действия усилия, направленного сверху вниз.
На работу опор забойного двигателя отрицательно влияют промывочные жидкости с большим содержанием твердой фазы (особенно это относится к утяжеленным буровым растворам) и абразивных частиц. Последние, проникая в опоры, разрушают контактные поверхности и этим увеличивают темп износа опоры. На работу опор также влияет температура промывочной жидкости. Так, в резинометаллических опорах при повышении тем¬пературы жидкости сверх предела, допустимого для данной марки резины, снижаются как прочность самой резины, так и прочность крепления ее к металлическому остову опоры. Повышенная тем¬пература влияет и на долговечность опор качения — усиливается коррозийный износ.
1.3.1 Подшипники скольжения в забойных двигателях
Использование в забойных двигателях резинометаллических опор скольжения основано на способности эластичных подшипников эффективно работать при смазке жидкостью, содержащей абразивные частицы. Принцип работы такой опоры заключается в следующем. При соприкосновении двух трущихся поверхностей и наличие в смазывающей жидкости твердых частиц, последние неизбежно попадают между этими
поверхностями, если обе поверхности металлические, частицы внедряются в ту и другую поверхность, причем величина внедрения пропорциональна величине нагрузки на трущиеся поверхности. При скольжении одной поверхности по другой песчинки задирают и изнашивают обе поверхности. Поверхности изнашиваются тем быстрее, чем выше частота вращения детали и величина нагрузки. Если одна из трущихся поверхностей эластичная, например резиновая, то твердая частица, попадая между поверхностями трения, вдавливается в эластичную резиновую поверхность, не вызывая в ней остаточных деформаций. Сила прижатия частицы к металлу не зависит от величины нагрузки и определяется только упругостью резины. Следовательно, износ соприкасающейся с резиной металлической поверхности будет в этом случае значительно меньше[1].
Изготовление одного из элементов пары трения из эластичного материала, в качестве которого применяется резина, позволило создать опоры, которые отличаются простотой и высокой износостойкостью при работе в промывочных жидкостях с небольшим содержанием твердой фазы. Вследствие высокой эластичности резиновой поверхности компенсируются некоторые дефекты и неточности изготовления и сборки подшипника, повышается равномерность распределения осевой нагрузки по ступеням осевой опоры, несколько сглаживаются ударные нагрузки на элементы опоры.
1.3.2 Подшипники качения в забойных двигателях
Использование подшипников качения в качестве опор винтовых забойных двигателей обусловлено рядом их преимуществ по сравнению с резинометаллической опорой скольжения. Основное из этих преимуществ состоит в том, что подшипники качения позволяют уменьшить потери на трение в опорах и тем самым увеличить механический к. п. д. двигателя. Подшипники качения имеют значительно меньшие потери на трение при запуске (момент трогания) и при небольших частотах вращения.
С увеличением глубины бурения и ростом неравномерности передачи осевой нагрузки на долото, усложнением условий работы забойного двигателя и долота, повышением плотности и вязкости промывочной жидкости преимущества подшипников качения по сравнению с резинометаллическими опорами скольжения возрастают. Процесс чистого (или свободного) качения состоит в том, что поверхности взаимно перекатывающихся тел непрерывно меняют участки контакта без видимого скольжения. Однако в реальных условиях свободное качение наблюдается редко. Качение обычно сопровождается проскальзыванием одного контактирующего тела относительно другого. Такое проскальзывание особенно велико в бессепараторных подшипниках, что увеличивает трение скольжения между шариком и беговой дорожкой. Однако современные открытые подшипники гидравлических забойных двигателей конструируются без сепараторов. Это обусловлено тем, что отсутствие сепаратора позволяет увеличить диаметр шариков и их число, что, в свою очередь, повышает грузоподъемность подшипника. Это особенно важно в условиях ограниченных диаметральных габаритов забойного двигателя.
1.3.3 Сравнительная оценка осевых опор различных типов
Из сравнения возможностей осевых опор различных типов можно заключить следующее:
1.Резинометаллическая осевая опора эффективно работает при бурении с промывкой водой или маловязкими и глинистыми малозагрязненными растворами. В этих условиях она обладает высоким коэффициентом полезного действия и достаточной стойкостью.
2.Бурение с применением утяжеленных глинистых растворов лучше вести забойными двигателями с осевыми подшипниками качения, так как потери на трение в этих опорах в меньшей степени зависят от загрязненности промывочной жидкости.
3.Резинометаллическая осевая опора имеет низкие потери на трение при высоких частотах вращения (400—800 об/мин) и смазке водой или глинистым маловязким незагрязненным раствором. При высокой частоте вращения и применении абразивной жидкости износостойкость резинометаллической пяты выше долговечности опоры на подшипниках качения.
4.Коэффициент трения резинометаллической пяты существенно возрастает (в 2—3 раза и более) при уменьшении частоты вращения, поэтому целесообразно в забойных двигателях с низкими частотами вращения использовать осевую опору качения.
5.При бурении на больших глубинах и неравномерной передаче осевой нагрузки на двигатель с ростом плотности, вязкости и температуры промывочной жидкости преимущества опор качения по сравнению с резинометаллическими возрастают. В этих условиях в забойных двигателях следует применять опоры качения.
6.Применение резинометаллической опоры скольжения ограничено забойными температурами 110°С. Опоры качения не имеют температурных ограничений.
7.Эксплуатационные качества опор скольжения повышаются с увеличением диаметра забойного двигателя, так как при этом улучшаются характеристики трения и износа. Преимущества опор качения, наоборот, возрастают с уменьшением диаметра забойного двигателя.
1.4 Рабочий процесс винтового двигателя
Винтовые поверхности статора и ротора делят рабочий объем двигателя на ряд полостей. Полости, связанные с обла¬стями высокого и низкого давлений, называются камерами, а замкнутые полости — шлюзами. В поперечном сечении име¬ются камеры, разделенные между собой контактной линией. Каждая камера по мере вращения периодически связывается с полостями высокого и низкого давлений и в каждый задан-ный момент времени становится шлюзом. Теоретически на длине одного шага происходит разобщение полостей, находя¬щихся выше и ниже рабочих органов. Поверхности винтовых зубьев ротора и статора, взаимно пе¬ресекаясь, отсекают область высокого давления жидкости от области низкого давления и препятствуют свободному перетоку жидкости. Под действием перепада давления жидкости образуется вращающий момент, передаваемый на вал шпинделя. Чем больше перепад давления на двигателе, тем больше вращающий момент[1].
Рисунок 3. Кинематика рабочих органов винтового двигателя с различным числом зубьев:
— однозаходный, — двухзаходный, — трехзаходный,
и — оси ротора и ста¬тора,
— эксцентриситет, , ..., — точки контакта;
и — начальные окруж¬ности.
По принципу действия винтовой двигатель можно сравнить с поршневым гидравлическим дви¬гателем, снабженным поршнем, перемещающимся вдоль оси ро¬тора по винтовой линии. Роль поршня выполняют отсекающие поверхности винтового ротора. В каждом поперечном сечении кинематика рабочих органов характеризуется двумя начальными окружностями (рис. 3). В винтовых машинах ротор совершает планетарное движение. Смещение оси ротора относительно оси статора на¬зывается эксцентриситетом двигателя[2].
Однозаходный ротор не симметричен относительно центра своей начальной окружности. Сечение ротора представляет собой круг с центром , а сечение статора — овал, симметрич¬ный относительно точки . Винтовые двигатели с однозаходным ротором довольно просты по конструкции и поэтому ши¬роко применяются в различных отраслях промышленности[2].
Винтовые роторные двигатели имеют ряд преимуществ, что позволяет использовать их как забойные дви¬гатели:
1. отсутствие клапанных или золотниковых распределите¬лей потока жидкости;
2. отсутствие относительного перемещения трущихся дета¬лей пары ротор — статор;
3. непрерывное изменение положения линии контакта ра¬бочих органов при вращении ротора позволяет потоку бурового раствора удалять абразивные частицы из камер и шлюзов.
Условия создания шлюзов в паре ротор — статор объемных винтовых двигателей следующие:
а. число зубьев или заходов статора должно быть на еди¬ницу больше зубьев ротора ;
б. отношение шага зубьев статора к шагу зубьев ротора должно быть пропорционально отношению числу их зубьев, т. е.
(1.3.1)
Отношение чисел зубьев ротора и статора называется пере¬даточным отношением:
(1.3.2)
Теоретически винтовой двигатель может иметь любое пере¬даточное отношение. Двигатели с малозаходными винтовыми механизмами раз-вивают большие частоты вращения при небольшом вращающем моменте. По мере увеличения числа заходов ротора вращаю¬щий момент увеличивается и снижается частота вращения. Это объясняется тем, что винтовой механизм с многозаходным ро¬тором исполняет роль двигателя и одновременно редуктора, пе¬редаточное отношение которого пропорционально числу захо¬дов ротора.
Похожие материалы
Чертежи-Графическая часть-Дипломная работа-Компоновка низа бурильной колонны, Демпфер, Компоновка низа бурильной колонны с центратором, Деталировка
https://vk.com/aleksey.nakonechnyy27
: 7 мая 2016
На рисунке 3.1 показан гидравлический демпфер бурильного инструмента.
Гидравлический демпфер бурильного инструмента содержит корпус 1, на верхнем конце которого размещен переводник 2, предназначенный для соединения с бурильной колонной и со стволом 3, жестко связанным со штоком 4, имеющим возможность передачи крутящего момента, расположенные между корпусом и стволом рабочие поршни 5 двухстороннего действия, выполненные в виде полых цилиндров с расположенными в их внутрен
994 руб.
Винтовой забойный двигатель Д2-172М-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 23 мая 2016
Винтовой забойный двигатель Д2-172М-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
500 руб.
Деталировка-Сборочный чертеж-Винтовой забойный двигатель Д2-172М: Седло клапана, Ротор, Корпус-Чертежи-Графическая часть-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 23 июня 2016
Деталировка-Сборочный чертеж-Винтовой забойный двигатель Д2-172М: Седло клапана, Ротор, Корпус-Чертежи-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
581 руб.
Чертежи-Графическая часть-Курсовая работа-Схема установки "Спутник-А", Патентно-информационный обзор, Фильтр-сепаратор, Деталировка
https://vk.com/aleksey.nakonechnyy27
: 6 мая 2016
Сепаратор-это установка, используемая для разделения попутного газа и свободных жидкостей.
Сепараторы состоят из четырех секций: основной для выделения наибольшей доли газа; осадительной секции для выделения пузырьков газа, вышедших из основной секции; секции сбора нефти для сбора нефти перед ее выводом из сепаратора и каплеуловительной секции для улавливании капель жидкости, уносимых газом из сепаратора.
Эффективность работы сепаратора определяется содержанием газа в жидкости, выходящей из сепа
696 руб.
Чертежи-Графическая часть-Курсовая работа-Агрегат А-50М, Гидравлическая выносная опора, Патентно-информационный обзор, Деталировка
https://vk.com/aleksey.nakonechnyy27
: 4 мая 2016
Гидрозамок данного типа по исполнению относится к односторонним разгруженным гидрозамкам, устанавливаемым между дросселем и гидроцилиндром, и используется для предотвращения самопроизвольного втягивания штока в гидроцилиндрах отвала бульдозеров и стрел самоходных кранов, поэтому его номинальное давление значительно превышает максимальное давление в гидроцилиндре аутригера. Конструктивно данный гидрозамок имеет малые габариты и массу, относительно прост в установке, устанавливается на маслопровод
696 руб.
Чертежи-Графическая часть-Курсовая работа-Агрегат АРБ-100, Патентно-информационный обзор, Буровой ротор, Деталировка
https://vk.com/aleksey.nakonechnyy27
: 4 мая 2016
Агрегаты для капитального ремонта и бурения нефтяных и газовых скважин, включают два передвижных блока: блок - подъемник с транспортной базой, приводным двигателем, лебедкой, трансмиссией и телескопической буровой вышкой и блок бурового основания, платформа которо выше блока-подъемника. Блок бурового основания оборудован ротором, подсвешниками и приемными мостками со стеллажами.
Роторы таких агрегатов имеют двухступенчатую цилиндрическую передачу от гидродвигателя к столу ротора, смонтиров
696 руб.
Чертежи-Графическая часть-Курсовая работа-Вспомогательная гидравлическая лебедка, Патентно- информационный обзор
https://vk.com/aleksey.nakonechnyy27
: 4 мая 2016
Агрегат АРБ 100 предназначен для разбуривання цементных пробок в трубах диаметром 5-6 и связанных с этим процессом операций (спуск и подъём бурильных труб, промывка скважин и т. д., спуска и подъема насосно-компрессорных труб, установки фонтанной арматуры, ремонта и ликвидации аварий, проведения буровых работ.
Все механизмы агрегата, за исключением промывочного насоса, монтируются на шасси автомобиля КрАЗ-(250). В качестве привода используется ходовой двигатель автомашины.
Промывочный насос смон
596 руб.
Чертежи-Графическая часть-Курсовая работа-Буровое лопастное долото, Патентно-информационный обзор
https://vk.com/aleksey.nakonechnyy27
: 4 мая 2016
При бурении нефтяных и газовых скважин чаще всего применяют трехлопастные (3Л и 3ИР) и шестилопастные (6ИР) долота. Лопастное долото 3Л состоит из корпуса, верхняя часть которого имеет ниппель с замковой резьбой для присоединения к бурильной колонне, и трех приваренных к корпусу долота лопастей, расположенных по отношению друг к другу под углом 120 градусов. Для подвода бурового раствора к забою долото снабжено промывочными отверстиями, расположенными между лопастями. Лопасти выполнены заостренн
596 руб.
Другие работы
Современное состояние рынка монополистической конкуренции в России
Qiwir
: 6 ноября 2013
Введение…………………………………………………...…………………..…....3
Глава 1. Характеристика рынка монополистической конкуренции
1.1 Основные черты рынка монополистической конкуренции………...….….....4
1.2 Фирма на рынке монополистической конкуренции в
краткосрочном периоде…………………………………………………..……….10
1.3 Фирма на рынке монополистической конкуренции в долгосрочном
периоде. …………………………………………………..……….…………….....12
1.4 Экономические характеристики деятельности фирм в
условиях монополистической конкуренции……………………………………
10 руб.
Рабинович Сборник задач по технической термодинамике Задача 174
Z24
: 30 ноября 2025
В цилиндре двигателя внутреннего сгорания находится воздух при температуре 500 ºC. Вследствие подвода теплоты конечный объем воздуха увеличился в 2,2 раза.
В процессе расширения воздуха давление в цилиндре практически оставалось постоянным.
Найти конечную температуру воздуха и удельные количества теплоты и работы, считая зависимость теплоемкости от температуры нелинейной.
Ответ: t2=1428 ºC, l=266,3 кДж/кг, qp=1088,7 кДж/кг.
150 руб.
Ошибочная суть метода дисконтирования
evelin
: 20 декабря 2013
Методы оценки эффективности капиталовложений, возникшие в 1960-х гг., были восприняты экономистами как надежда на гарантированное экономическое процветание. Речь идет о методе дисконтирования денежных потоков и придания ему чувствительности к рискам и инфляции, использовании в расчетах способов бухгалтерского учета и т.д.
Однако изначальная эйфория, связанная со становлением новых методов оценки эффективности инвестиционных решений, сменилась периодом дискуссий и уныния. Поводом послужило значи
15 руб.
Международные расчеты. Перспективы развития имиджевого потенциала России
alfFRED
: 13 сентября 2013
Содержание
1. Понятие международных расчетов и условия их осуществления
2. Проблемы и перспективы формирования финансового центра в России
3. Дайте определение
4. Тесты
Список литературы
1. Понятие международных расчетов и условия их осуществления
Появление и дальнейшие изменения в международных расчетах связаны с развитием и интернационализацией товарного производства и обращения. В них отражается относительно обособленная форма движения стоимостей в международном обороте в силу
10 руб.