Вариант №3.Теория вероятностей и математическая статистика

Состав работы

material.view.file_icon
material.view.file_icon теорвер ВАР3.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1.В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2.В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3.Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие наступит: а) 20 раз; б) менее 20 раз.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.
5.  Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 1 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (4;8).

Дополнительная информация

Оценка:Зачет
Дата оценки: 20.05.2016
Рецензия:Уважаемый .....
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
«Теория вероятностей и математическая статистика». Вариант №3
Задание 1. Комбинаторика Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия. Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной с
User LiVolk : 20 января 2022
200 руб.
«Теория вероятностей и математическая статистика». Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Задача 1 Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны? Задача 2 В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Задача 3 В типографии имеется печатных машин. Для каждой м
User IT-STUDHELP : 18 ноября 2021
500 руб.
promo
Теория вероятностей и математическая статистика. Вариант №3
Вариант No 3 1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны? 2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар? 3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
User 89370803526 : 26 июня 2020
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Задание 1. Комбинаторика Вариант 3. Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы Вариант 3. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01 для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия. Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое
User SibGUTI2 : 7 апреля 2020
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Вариант №03 Задание 1. Комбинаторика Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
User CrashOv : 20 февраля 2020
350 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Часть I: Теория вероятностей и математическая статистика Задача 1. В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями): а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной? б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной? в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
User Dreyko : 19 февраля 2017
400 руб.
Теория вероятностей и математическая статистика. Вариант №3
I. Задачи 521-530. Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель. II. Задачи No 541-550. Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. III. Зада
User СибирскийГУТИ : 18 августа 2013
50 руб.
Теория вероятности и математическая статистика. Вариант №3
I. Задачи 521-530. Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель. II. Задачи No 541-550. Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. III. Задачи
User тантал : 18 августа 2013
70 руб.
Контрольная работа по дисциплине: «Электропитание устройств и систем связи».Вариант №16.(Семестр 6-й)
ЗАДАНИЕ - рассчитать количество и емкость элементов аккумуляторных батарей и выбрать их тип; найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; выбрать типовое выпрямительное устройство; выбрать вводный шкаф; рассчитать заземляющее устройство и выбрать автомат защиты. - составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования.
User daffi49 : 31 января 2014
70 руб.
Контрольная работа по дисциплине: «Электропитание устройств и систем связи».Вариант №16.(Семестр 6-й)
Лабораторная работа 1-3 по дисциплине: Операционные системы LINUX. Вариант 15
Лабораторная работа N 1 Работа с файловой системой LINUX Цель работы: Изучить команды управления каталогами и файлами. Порядок выполнения работы. 1. Если вы еще не установили операционную систему LINUX, установите. 2. Включить компьютер и войти в систему LINUX , если система требует пройдите процедуру идентификации. 3. Ознакомиться с информацией, появившейся на экране монитора. 4. Выбрать на панели монитора режим «терминал». Учимся создавать новый каталог. 5. Убедитесь, что Вы находитесь в с
User IT-STUDHELP : 4 апреля 2022
1200 руб.
promo
Теоретическая механика СамГУПС Самара 2020 Задача К2 Рисунок 5 Вариант 3
Сложное движение точки По заданному уравнению вращения φ = f1(t) тела А и уравнению движения s = ОМ = f1(t) точки М относительно тела А определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = t1. Схема к задаче и исходные данные к ней определяются в соответствии с шифром по рис. К2.0–К2.9 и таблице К2. Точка М показана в направлении положительного отсчета координаты s. Положительное направление отсчета угла φ указано стрелкой.
User Z24 : 9 ноября 2025
250 руб.
Теоретическая механика СамГУПС Самара 2020 Задача К2 Рисунок 5 Вариант 3
Пневмоаппарат крановый 12.000 деталировка
Пневмоаппарат крановый 12.000 сборочный чертеж Пневмоаппарат крановый 12.000 спецификация Рукоятка 12.001 Корпус 12.003 Пробка 12.004 Заглушка 12.005 Штуцер 12.007 Пружина 12.009 Крановый пневмоаппарат служит для переключения подачи жидкости или газа по трем направлениям (АВС см. на схеме). Сегментный вырез пробки 4 позволяет соединять одновременно только два отверстия между собой, перекрывая третье (поз. II и III), или перекрывать все три отверстия одновременно (поз. I). Пробка пневмоаппарата
User coolns : 19 декабря 2019
250 руб.
Пневмоаппарат крановый 12.000 деталировка promo
up Наверх