Экзамен по дисциплине: «Теория вероятностей математическая статистика и случайные процессы». Билет №14
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет No14
1. Тема: Схема Бернулли.
Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что не менее двух из них проработают гарантийный срок?
2. Тема: Дискретные с.в.
Задача: Число аварий в год подчиняется распределению Пуассона. На некотором предприятии параметр этого распределения =0,5 ( год –1). Сколько в среднем аварий в год происходит на предприятии?
1. Тема: Схема Бернулли.
Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что не менее двух из них проработают гарантийный срок?
2. Тема: Дискретные с.в.
Задача: Число аварий в год подчиняется распределению Пуассона. На некотором предприятии параметр этого распределения =0,5 ( год –1). Сколько в среднем аварий в год происходит на предприятии?
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 14.06.2016
Рецензия:Уважаемый,
Разинкина Татьяна Эдуардовна
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 14.06.2016
Рецензия:Уважаемый,
Разинкина Татьяна Эдуардовна
Похожие материалы
Экзамен по дисциплине: «Теория вероятностей математическая статистика и случайные процессы». Билет №14
xtrail
: 18 января 2014
Билет No14
1. Тема: Схема Бернулли.
Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что не менее двух из них проработают гарантийный срок?
2. Тема: Дискретные с.в.
Задача: Число аварий в год подчиняется распределению Пуассона. На некотором предприятии параметр этого распределения =0,5 ( год –1). Сколько в среднем аварий в год происходит на предприятии?
120 руб.
Экзамен по дисциплине: « Теория вероятностей математическая статистика и случайные процессы»
Dusya
: 5 октября 2011
Билет № 13
1. Тема: Схема Бернулли.
Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что три телевизора не проработают гарантийный срок?
2. Тема: Дискретные с.в.
Задача: Вероятность попадания в цель для некоторого стрелка равна 0,75. Какова вероятность того, что для первого попадания в цель ему потребуется три выстрела?
150 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Экзамен по дисциплине «Теория вероятностей математическая статистика и случайные процессы» Билет №6
dubhe
: 22 февраля 2015
Экзамен по дисциплине «Теория вероятностей математическая статистика и случайные процессы»
Билет No6
1. Тема: Геометрические вероятности.
Задача: Происходит стрельба по мишени диаметром 10 см. Для некоторого стрелка попадание в любую точку мишени равновероятно. Он получит зачёт по стрельбе, если с первого раза попадёт в центральную часть мишени диаметром 5 см. Найти вероятность этого события.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему зак
200 руб.
Экзамен по дисциплине «Теория вероятностей математическая статистика и случайные процессы». Билет № 5
xtrail
: 10 апреля 2013
Билет № 5
Общее определение вероятности.
Геометрические вероятности
Задание вероятности на дискретном пространстве элементарных исходов
Аксиоматическое определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. Событие А – шары разных цветов. Найти вероятность события .
Двумерные случайные величины.
Дискретная двумерная случайная величина.
Функция распределения двумерной случайной величины.
Непрерывные двумерные случайные величины.
Задача: Дана функция
250 руб.
Другие работы
Расчет стабилизатора напряжения
Lika9150
: 17 марта 2015
Выбираем тип стабилитрона и ток, проходящий через стабилитрон, Iст. Тип стабилитрона определяем по напряжению стабилизации Uст, которое должно лежать в допустимых пределах выходного напряжения:
,
.
Отсюда, используя таблицу 1, .
Для повышения коэффициента стабилизации ток через стабилитрон выбираем минимально возможным. Используя таблицу 1:
Тепло-, газоснабжение и вентиляция здания
alfFRED
: 1 ноября 2012
Задание
I. Расчет потери теплоты отапливаемого здания
Расчет тепловой мощности системы отопления
1.1 Определение основных и добавочных потерь теплоты помещения через ограждающие конструкции
1.2 Расчет тепловой нагрузки помещения
1.3 Гидравлический расчёт трубопроводов системы отопления
II. Вентиляция
2.1 Расчет воздухообмена в помещениях
2.2 Теплопоступление от людей
2.3 Тепловыделения от искусственного освещения
2.4 Теплопоступления через заполнение световых проемов
III. Газоснабжение
3.1 Расче
5 руб.
Лабораторная работа № 1.4 по дисциплине: Метрология, стандартизация и сертификация. "Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями". Вариант 14
Jurgen
: 13 июня 2012
1. Цель работы.
Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.
2.2. Контрольная задача.
В нормальных условиях произведено пятикратное измерение частоты. Класс точности прибора γ = 0,1%, доверительная вероятность P = 0,990. Предельное значение шкалы 150 Гц.
Результа
250 руб.
Структуры и алгоритмы обработки данных (2 часть) Лабораторная работа № 3 вариант 4
maxgalll
: 16 ноября 2011
1. Разработать процедуру построения АВЛ-дерева.
2. Вычислить среднюю высоту АВЛ-дерева для n=10, 50, 100, 200, 400 (n -количество вершин в дереве) и заполнить таблицу следующего вида. Проанализировать полученные результаты, сравнить их с теоретическими оценками и результатами из лабораторной работы 1.
3. Экспериментально определить среднее количество поворотов на одну включаемую вершину в АВЛ-дерево.
45 руб.