Дискретная математика. 10 заданий. Вариант №3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 3
1. Если множество М = {(x,y):|y-x| 2}, то:
а) (1,-1)M; б) (-3,1)M; в) (0,-2)M; г) (-2,-3)M.
Какие из вышеприведенных высказываний истинны, какие - ложны?
2. Истинны ли высказывания:
а) A\(BC) = (A\B)\C; б) A(B\C)(AB)?
3. Из 64 студентов на вопрос, занимаются ли они в свободное время спортом, утвердительно ответили 40 человек; на вопрос, любят ли они слушать музыку, 30 человек ответили утвердительно, причем 21 студент занимаются спортом и любят слушать музыку. Сколько человек не увлекаются ни спортом, ни музыкой?
4. Комитет рассматривает кандидатуры шести человек, подавших заявления о приеме на работу. Все шестеро имеют одинаковые профессиональные характеристики. На интервью из шестерых будут приглашены только трое. Порядок приглашения каждого имеет значение, так как первый кандидат будет иметь лучший шанс быть приглашенным на работу; второй будет приглашен, если первому будет отказано, третий будет приглашен, если два предыдущих кандидата получат отказ. Сколько всего существует способов приглашения трех кандидатов из шести при таком способе отбора?
5. Собрание, на котором присутствует 20 человек, избирает двух делегатов на две конференции. Каким числом способов это можно сделать? Сколькими способами можно отобрать двух кандидатов на одну конференцию?
6. В ящике содержится 10 одинаковых деталей, помеченных номерами 1,2,3,...,8,9,10. Наудачу извлечены 6 деталей. Сколькими способами можно извлечь 6 деталей так, чтобы среди извлеченных деталей были:
а) деталь No4;
б) детали No1, No2, No3.
7. Укажите, какие из следующих предложений являются высказываниями, установите истинность простых высказываний. В сложных высказываниях выделите конъюнкцию и дизъюнкцию, установите истинность. Возьмите первые два высказывания и сформулируйте отрицание, конъюнкцию и дизъюнкцию.
1. {а,b,c}={c,a,b}.
2. (АВ)||(ВА).
3. Всегда (х+у)3=х3+3х2у+3ху2+у3.
4. “А.С. Пушкин родился в 1799 году”.
5. 17<42<18.
6. “Треугольник АВС является остроугольным, прямоугольным или тупоугольным”.
7. =-4, но -4 (-2)2.
8. Если 18 делится на 4, то 18 делится на 2.
9. 16 делится на 4 тогда и только тогда, когда 16 делится на 2.
10. ( x R):(х-1 х), если R – множество действительных чисел.
8. Доказать методом математической индукции, что при любом натуральном n справедливо следующее равенство:
1•4 + 2•7 + 3•10 + ... + n(3n+1) = n(n+1)2.
9. Определить истинность высказываний.
где и заданы таблицами:
: :
10. Ориентированный граф G с множеством вершин V = {1, 2, 3, 4, 5, 6, 7} задан списком дуг
E = {(1, 2), (1, 4), (1, 5), (2, 4), (3, 2), (3, 4), (3, 4), (4, 2), (4, 5), (5, 5), (5, 7), (7, 1)}.
Построить реализацию графа G.
Построить матрицу инциденций графа G.
Построить матрицу соседства вершин графа G.
1. Если множество М = {(x,y):|y-x| 2}, то:
а) (1,-1)M; б) (-3,1)M; в) (0,-2)M; г) (-2,-3)M.
Какие из вышеприведенных высказываний истинны, какие - ложны?
2. Истинны ли высказывания:
а) A\(BC) = (A\B)\C; б) A(B\C)(AB)?
3. Из 64 студентов на вопрос, занимаются ли они в свободное время спортом, утвердительно ответили 40 человек; на вопрос, любят ли они слушать музыку, 30 человек ответили утвердительно, причем 21 студент занимаются спортом и любят слушать музыку. Сколько человек не увлекаются ни спортом, ни музыкой?
4. Комитет рассматривает кандидатуры шести человек, подавших заявления о приеме на работу. Все шестеро имеют одинаковые профессиональные характеристики. На интервью из шестерых будут приглашены только трое. Порядок приглашения каждого имеет значение, так как первый кандидат будет иметь лучший шанс быть приглашенным на работу; второй будет приглашен, если первому будет отказано, третий будет приглашен, если два предыдущих кандидата получат отказ. Сколько всего существует способов приглашения трех кандидатов из шести при таком способе отбора?
5. Собрание, на котором присутствует 20 человек, избирает двух делегатов на две конференции. Каким числом способов это можно сделать? Сколькими способами можно отобрать двух кандидатов на одну конференцию?
6. В ящике содержится 10 одинаковых деталей, помеченных номерами 1,2,3,...,8,9,10. Наудачу извлечены 6 деталей. Сколькими способами можно извлечь 6 деталей так, чтобы среди извлеченных деталей были:
а) деталь No4;
б) детали No1, No2, No3.
7. Укажите, какие из следующих предложений являются высказываниями, установите истинность простых высказываний. В сложных высказываниях выделите конъюнкцию и дизъюнкцию, установите истинность. Возьмите первые два высказывания и сформулируйте отрицание, конъюнкцию и дизъюнкцию.
1. {а,b,c}={c,a,b}.
2. (АВ)||(ВА).
3. Всегда (х+у)3=х3+3х2у+3ху2+у3.
4. “А.С. Пушкин родился в 1799 году”.
5. 17<42<18.
6. “Треугольник АВС является остроугольным, прямоугольным или тупоугольным”.
7. =-4, но -4 (-2)2.
8. Если 18 делится на 4, то 18 делится на 2.
9. 16 делится на 4 тогда и только тогда, когда 16 делится на 2.
10. ( x R):(х-1 х), если R – множество действительных чисел.
8. Доказать методом математической индукции, что при любом натуральном n справедливо следующее равенство:
1•4 + 2•7 + 3•10 + ... + n(3n+1) = n(n+1)2.
9. Определить истинность высказываний.
где и заданы таблицами:
: :
10. Ориентированный граф G с множеством вершин V = {1, 2, 3, 4, 5, 6, 7} задан списком дуг
E = {(1, 2), (1, 4), (1, 5), (2, 4), (3, 2), (3, 4), (3, 4), (4, 2), (4, 5), (5, 5), (5, 7), (7, 1)}.
Построить реализацию графа G.
Построить матрицу инциденций графа G.
Построить матрицу соседства вершин графа G.
Похожие материалы
Дискретная Математика. Вариант №3.
MK
: 13 апреля 2016
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции f(x;y;z) найти методом преобразования минимальную ДНФ (дизъюнктивная нормальная форма). По таблице истинности построить СКНФ (совершенная конъюнктивная нормальная форма). По минимальной ДНФ построить релейно-кон
200 руб.
Дискретная математика 3 семестр Вариант №3
Студенткааа
: 20 октября 2018
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
“Если вопрос на экзамене сформулирован корректно, а студент не знает отв
100 руб.
Контрольная работа. Дискретная математика. Вариант №3
astoria
: 26 ноября 2019
Задачи:
1. Задано универсальное множество U и A, B, C, D множества. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,2,3,4,5}; A={1,3,5}; B={2,4}; C={2,3,4}; D={5}.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
"Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника"
3. Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По минимальной ДН
250 руб.
Дискретная математика (Контрольная работа. Вариант №3)
Qski
: 27 января 2019
Федеральное агентство связи
Сибирский Государственный Университет Телекоммуникаций и Информатики
Межрегиональный центр переподготовки специалистов
Контрольная работа
По дисциплине: Дискретная математика
Выполнил:
Группа:
Вариант: №3
Проверил: Мурзина Татьяна Степановна
Новосибирск 2017г.
Задача 1.Определить величину постоянных затрат на электроэнергию при следующих исходных данных :
Месяц Объем производства по вариантам, тыс. шт. Расходы на электроэнергию, тыс. руб.
1 16 480
2 15
300 руб.
Дискретная математика. Контрольная работа. Вариант №3.
deanasera84
: 16 апреля 2018
I. Задано универсальное множество U и множества А,В,С,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {1,2,3,4,5},
А={1,3,5}; В={2,4}; С={2,3,4}; D={5}.
а) ; б) ; в) ; г) ; д)
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
Если на небе светит солнце, и не идет дождь, то погода подходит для пикника.
III. Для булевой функции найти методом преобразования минимальную
200 руб.
Контрольная работа. Дискретная математика. Вариант №3
Jersey
: 24 октября 2016
1.Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A\B) (A\C) = A \ (BC)б) A(B\C)=(AB)\(AC).
2.Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным,
200 руб.
Дискретная математика. Контрольная работа. Вариант №3.
smax24
: 27 января 2014
I. Задано универсальное множество и множества . Найти результаты действий a) - д) и каждое действие проиллюстрировать с по-мощью диаграммы Эйлера-Венна.
50 руб.
Дискретная математика. Контрольная работа/ Вариант №3
Root
: 28 декабря 2013
1. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника».
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную
Другие работы
Восточно – Сибирский экономический район
Elfa254
: 3 сентября 2013
Введение ………………………………………………………………………………… 2
1. Общие сведения ……………………………………………………………………… 3
2. Природные условия и ресурсы ……………………………………………………… 3
3. Население и трудовые ресурсы ……………………………………………………... 6
4. Особенности хозяйства ………………………………………………………………. 7
5. Территориальная организация хозяйства …………………………………………… 7
6. Транспорт и связь …………………………………………………………………….. 8
7. Природные рекреационные ресурсы ……………………………………………… 11
8. Туризм ………………………………………………………………………………. 12
Заключени
Язык программирования высокого уровня С++
Slolka
: 7 октября 2013
СОДЕРЖАНИЕ
1. ВВЕДЕНИЕ
2. ПОСТАНОВКА ЗАДАЧИ
3. АЛГОРИТМИЗАЦИЯ РЕШЕНИЯ ЗАДАЧИ
3.1 Описание метода решения
3.2 Конструирование алгоритма
4. ОПИСАНИЕ ПРОГРАММЫ
4.1 Общие сведения
4.2 Структура программы
4.3 Описание внутренних переменных, входных и выходных данных
5. РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ
6. АНАЛИЗ РЕЗУЛЬТАТОВ
7. ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
1. ВВЕДЕНИЕ
Данная курсовая работа выполнена на языке программирования высокого уровня С++ с использованием компилятора Microsoft Visual Stu
10 руб.
Зачетная работа по дисциплине: Интернет-технологии. Помогу с написанием работы!
IT-STUDHELP
: 2 июля 2019
Зачетное задание по языку HTML
Построение собственного сайта
• Тема сайта — любая.
• Сайт должен состоять из нескольких (не менее 3) страниц.
• Сайт должен быть реализован с использованием фреймов: навигация по сайту всегда доступна в отдельном фрейме, а в другом — открывается выбранная страница.
• В оглавлении сайта каждый пункт (гиперссылка) должен быть оформлен картинкой.
100 руб.
Луковая сеялка СЛН-8А (чертеж общего вида)
maobit
: 13 апреля 2018
СЛН-8А предназначена для высева лука-севка на ровной поверхности и грядках.
УСТРОЙСТВО
Сеялка снабжается специальными катушечными высевающими аппаратами, закрепленными на задней стенке бункера. Над каждой катушкой установлена регулировочная заслонка.
В бункере расположены вращающиеся ворошилки, обеспечивающие непрерывную подачу луковиц высевающим катушкам.
Высевающие аппараты приводятся во вращение от опорных колес цепными и зубчатыми передачами. Перестановкой звездочек цепной передачи
390 руб.