Исследование работы аппарата воздушного охлаждения 2АВО-75 компрессорного цеха с усовершенствованием конструкции вентилятора и коллектора-Курсовая работа-Оборудование для добычи и подготовки нефти и газа
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра изображений
- Microsoft Word
- AutoCAD или DWG TrueView
Описание
2.1 Выбор базовой модели и техническая характеристика аппарата воз-душного охлаждения газа
Как известно, удельный объем воздуха в 830 раз больше, а теплоемкость в четыре раза меньше, чем у воды, Однако расход энергии на транспортировку теплоносителя в том И другом случае примерно одинаковы, так как для возду-ха требуется небольшой напор - 13-15 мм вод. ст., а для воды - 10-25 м. Низ-кий коэффициент теплоотдачи от труб к воздуху в АВО компенсируется увели-чением теплоотводящей поверхности путем ее оребрения.
Применение воздушного охлаждения вместо водяного позволяет значи-тельно сократить расход воды (до 80%) и количество стоков. С использовани-ем системы воздушного охлаждения имеется возможность расширять суще-ствующие производственные мощности и создавать новые в районах, удален-ных от источников воды.
При замене водяного охлаждения воздушным площадь застройки значи-тельно уменьшается за счет исключения площадей, занимаемых блоками обо-ротного водоснабжения, и за счет возможности расположения АВО рядом с технологическим оборудованием ила над ним.
Установка на месте АВО проста, а объем работ по подготовке площади невелик. При использовании системы воздушного охлаждения объем строи-тельства сетей водопровода и канализации уменьшается в 2-3 раза, что значи-тельно сокращает (до 1-1,5 лет) сроки подготовки площади для сооружения основных производственных установок.
Стоимость АВО (с вентилятором и приводом) в 2-4 раза больше стоимос-ти эквивалентного по площади теплообмена кожухотрубчатого теплообменни-ка. Но поскольку воздушное охлаждение не требует строительства системы оборотного водоснабжения и водоочистки, капиталовложения на систему воз-душного охлаждения оказываются примерно на 40% меньше.
Эксплуатационные расхода на водяное или воздушное охлаждение со-стоят из расходов на обслуживание и ремонт установок (включая систему по-дачи, отработки и слива воды) и затрат на потребляемую вентиляторами или насосами электроэнергию. В аппаратах с водяным охлаждением (особенно в кожухотрубчатых) трубы подвергаются коррозии как со стороны технологи-ческого потока, так и со стороны воды.
Из-за обложений накипи и загрязнений в аппаратах с водяным охлажде-нием снижается коэффициент теплопередачи, в связи с чем требуется часто останавливать аппарата для чистки и ремонта; помимо этого., приходится со-здавать резервные поверхности теплообмена. Борьба с коррозией, чистка и ремонт аппаратов требуют больших эксплуатационных расходов. Благодаря незначительным коррозии и загрязнениям ребристой поверхности труб со сто-роны воздуха при использовании АВО резервные теплообменные поверхности не нужны. Срок службы АВО намного большеs чем у аппаратов водяного охлаждения, а приводы вентиляторов в воздушной атмосфере работают почти без повреждений.
Для АВО основной статьей эксплуатационных расходов является стои-мость потребляемой электроэнергии. Однако АВО большую часть времени го-да имеют резерв мощности силовой установки (когда температура окружаю-щего воздуха ниже расчетной). Благодаря принимаемым мерам для экономии электроэнергии в такие дни среднегодовая потребность вентиляторов в элек-троэнергии ниже, чем потребность насосов, перекачивающих воду.
Ориентировочно, соотношение затрат на обслуживание и ремонт водя-ных и воздушных теплообменников составляет 4:1.
Поскольку воздух почти не оказывает коррозионного воздействия на трубы АВО, для их изготовления могут быть использованы более дешевые ма-териалы, чем для труб кожухотрубчатых теплообменников.
Применение системы воздушного охлаждения исключает возможность попадания воды в технологический поток в позволяет проводить чистку наружной поверхности труб во время работы аппарата.
Устанавливаемые на открытых площадках аппараты воздушного охла-ждения подвергаются влиянию резких колебаний температуры, воздействию дождя, града, нагреву солнечными лучами и замерзанию, что усложняет регу-лирование процесса теплообмена.
Считают, что АВО пожароопасны, поскольку в них возможна утечка тех-нологических продуктов и раздувание пламени вентилятором.
Учитывая все вышеперечисленные факторы, для модернизации принима-ем аппарат воздушного охлаждения газа 2АВЗ-75 ,рисунок 2.1. АВО данного типа хорошо себя зарекомендовала на предприятии ООО «Газпром трансгаз Ухта», он надежен в эксплуатации, ремотопригоден и легко может быть модер-низирован для достижения цели поставленной в данном дипломе. Техническая характеристика АВО представлена в таблице 2.1.
Как известно, удельный объем воздуха в 830 раз больше, а теплоемкость в четыре раза меньше, чем у воды, Однако расход энергии на транспортировку теплоносителя в том И другом случае примерно одинаковы, так как для возду-ха требуется небольшой напор - 13-15 мм вод. ст., а для воды - 10-25 м. Низ-кий коэффициент теплоотдачи от труб к воздуху в АВО компенсируется увели-чением теплоотводящей поверхности путем ее оребрения.
Применение воздушного охлаждения вместо водяного позволяет значи-тельно сократить расход воды (до 80%) и количество стоков. С использовани-ем системы воздушного охлаждения имеется возможность расширять суще-ствующие производственные мощности и создавать новые в районах, удален-ных от источников воды.
При замене водяного охлаждения воздушным площадь застройки значи-тельно уменьшается за счет исключения площадей, занимаемых блоками обо-ротного водоснабжения, и за счет возможности расположения АВО рядом с технологическим оборудованием ила над ним.
Установка на месте АВО проста, а объем работ по подготовке площади невелик. При использовании системы воздушного охлаждения объем строи-тельства сетей водопровода и канализации уменьшается в 2-3 раза, что значи-тельно сокращает (до 1-1,5 лет) сроки подготовки площади для сооружения основных производственных установок.
Стоимость АВО (с вентилятором и приводом) в 2-4 раза больше стоимос-ти эквивалентного по площади теплообмена кожухотрубчатого теплообменни-ка. Но поскольку воздушное охлаждение не требует строительства системы оборотного водоснабжения и водоочистки, капиталовложения на систему воз-душного охлаждения оказываются примерно на 40% меньше.
Эксплуатационные расхода на водяное или воздушное охлаждение со-стоят из расходов на обслуживание и ремонт установок (включая систему по-дачи, отработки и слива воды) и затрат на потребляемую вентиляторами или насосами электроэнергию. В аппаратах с водяным охлаждением (особенно в кожухотрубчатых) трубы подвергаются коррозии как со стороны технологи-ческого потока, так и со стороны воды.
Из-за обложений накипи и загрязнений в аппаратах с водяным охлажде-нием снижается коэффициент теплопередачи, в связи с чем требуется часто останавливать аппарата для чистки и ремонта; помимо этого., приходится со-здавать резервные поверхности теплообмена. Борьба с коррозией, чистка и ремонт аппаратов требуют больших эксплуатационных расходов. Благодаря незначительным коррозии и загрязнениям ребристой поверхности труб со сто-роны воздуха при использовании АВО резервные теплообменные поверхности не нужны. Срок службы АВО намного большеs чем у аппаратов водяного охлаждения, а приводы вентиляторов в воздушной атмосфере работают почти без повреждений.
Для АВО основной статьей эксплуатационных расходов является стои-мость потребляемой электроэнергии. Однако АВО большую часть времени го-да имеют резерв мощности силовой установки (когда температура окружаю-щего воздуха ниже расчетной). Благодаря принимаемым мерам для экономии электроэнергии в такие дни среднегодовая потребность вентиляторов в элек-троэнергии ниже, чем потребность насосов, перекачивающих воду.
Ориентировочно, соотношение затрат на обслуживание и ремонт водя-ных и воздушных теплообменников составляет 4:1.
Поскольку воздух почти не оказывает коррозионного воздействия на трубы АВО, для их изготовления могут быть использованы более дешевые ма-териалы, чем для труб кожухотрубчатых теплообменников.
Применение системы воздушного охлаждения исключает возможность попадания воды в технологический поток в позволяет проводить чистку наружной поверхности труб во время работы аппарата.
Устанавливаемые на открытых площадках аппараты воздушного охла-ждения подвергаются влиянию резких колебаний температуры, воздействию дождя, града, нагреву солнечными лучами и замерзанию, что усложняет регу-лирование процесса теплообмена.
Считают, что АВО пожароопасны, поскольку в них возможна утечка тех-нологических продуктов и раздувание пламени вентилятором.
Учитывая все вышеперечисленные факторы, для модернизации принима-ем аппарат воздушного охлаждения газа 2АВЗ-75 ,рисунок 2.1. АВО данного типа хорошо себя зарекомендовала на предприятии ООО «Газпром трансгаз Ухта», он надежен в эксплуатации, ремотопригоден и легко может быть модер-низирован для достижения цели поставленной в данном дипломе. Техническая характеристика АВО представлена в таблице 2.1.
Дополнительная информация
3 ИССЛЕДОВАНИЕ РАБОТЫ АГРЕГАТА ВОЗДУШНОГО
ОХЛАЖДЕНИЯ 2АВО-75
3.1 Постановка задачи исследования
Задачи исследования сводятся к сбору и анализу данных по рабате агре-гата воздушного охлаждения 2АВО-75 и конструкции его вентилятора и кол-лектора. При исследовании агрегата воздушного охлаждения 2АВО-75 необ-ходимо произвести:
- произвести условий работы и показателей надежности;
- рассмотреть возможные конструкции вентилятора и коллектора.
3.2 Результаты проведенных исследований
Как известно, удельный объем воздуха в 830 раз больше, а теплоемкость в четыре раза меньше, чем у воды. Однако расход энергии на транспортировку теплоносителя в том и другом случае примерно одинаковы, так как для возду-ха требуется небольшой напор - 13-15 мм вод. ст., а для воды - 10-25 м. Низ-кий коэффициент теплоотдачи от труб к воздуху в АВО компенсируется увели-чением теплоотводящей поверхности путем ее оребрения.
Применение воздушного охлаждения вместо водяного позволяет значи-тельно сократить расход воды (до 80%) и количество стоков. С использовани-ем системы воздушного охлаждения имеется возможность расширять суще-ствующие производственные мощности и создавать новые в районах, удален-ных от источников воды.
Современный нефтехимический комбинат расходует для охлаждения 60-80 тыс. м воды в час. Сооружения водоснабжения и канализации занимают до 12-
15% общей площади завода, а стоимость строительства систем водяного охла-ждения составляет 9-12% от стоимости строительства всего завода. Для соору-жения сетей водопровода и канализации нефтехимического комбината расход труб (стальных, чугунных, керамических и железобетонных) достигает не-скольких десятков тысяч тонн.
При замене водяного охлаждения воздушным площадь застройки значи-тельно уменьшается за счет исключения площадей, занимаемых блоками обо-ротного водоснабжения, и за счет возможности расположения АВО рядом с технологическим оборудованием ила над ним. Площадь, занимаемая АВО, со-ставляет 1,5-2,0% от площади завода.
Установка на месте АВО проста, а объем работ по подготовке площади невелик. При использовании системы воздушного охлаждения объем строи-тельства сетей водопровода и канализации уменьшается в 2-3 раза, что значи-тельно сокращает (до 1-1,5 лет) сроки подготовки площади для сооружения основных производственных установок.
Стоимость АВО (с вентилятором и приводом) в 2-4 раза больше стоимо-сти эквивалентного по площади теплообмена кожухотрубчатого теплообмен-ника. Но поскольку воздушное охлаждение не требует строительства системы оборотного водоснабжения и водоочистки, капиталовложения на систему воз-душного охлаждения оказываются примерно на 40% меньше.
Эксплуатационные расхода на водяное или воздушное охлаждение со-стоят из расходов на обслуживание и ремонт установок (включая систему по-дачи, отработки и слива воды) и затрат на потребляемую вентиляторами или насосами электроэнергию. В аппаратах с водяным охлаждением (особенно в кожухотрубчатых) трубы подвергаются коррозии как со стороны технологи-ческого потока, так и со стороны воды.
Из-за обложений накипи и загрязнений в аппаратах с водяным охлажде-нием снижается коэффициент теплопередачи, в связи с чем требуется часто останавливать аппарата для чистки и ремонта; помимо этого., приходится со-здавать резервные поверхности теплообмена. Борьба с коррозией, чистка и ремонт аппаратов требуют больших эксплуатационных расходов. Благодаря незначительным коррозии и загрязнениям ребристой поверхности труб со сто-роны воздуха при использовании АВО резервные теплообменные поверхности не нужны. Срок службы АВО намного больше, чем у аппаратов водяного охлаждения, а приводы вентиляторов в воздушной атмосфере работают почти без повреждений.
Для АВО основной статьей эксплуатационных расходов является стои-мость потребляемой электроэнергии. Однако АВО большую часть времени го-да имеют резерв мощности силовой установки (когда температура окружаю-щего воздуха ниже расчетной). Благодаря принимаемым мерам для экономии электроэнергии в такие дни среднегодовая потребность вентиляторов в элек-троэнергии ниже, чем потребность насосов, перекачивающих воду.
Ориентировочно, соотношение затрат на обслуживание и ремонт водя-ных и воздушных теплообменников составляет 4:1.
Поскольку воздух почти не оказывает коррозионного воздействия на трубы АВО, для их изготовления могут быть использованы более дешевые ма-териалы, чем для труб кожухотрубчатых теплообменников.
Применение системы воздушного охлаждения исключает возможность попадания воды в технологический поток в позволяет проводить чистку наружной поверхности труб во время работы аппарата.
В случае отсутствия электроэнергии AВО могут работать благодаря есте-ственной тяге с нагрузкой 25-30% от расчетной.
Устанавливаемые на открытых площадках аппараты воздушного охла-ждения подвергаются влиянию резких колебаний температуры, воздействию дождя, града, нагреву солнечными лучами и замерзанию, что усложняет регу-лирование процесса теплообмена.
Считают, что АВО пожароопасны, поскольку в них возможна утечка тех-нологических продуктов и раздувание пламени вентилятором.
К недостаткам АВО относится также большой шум, создаваемый рабо-тающими вентиляторами.
3.3 Рекомендации
На основании проведенного исследования определяем преимущества предлагаемых конструкций вентилятора и коллектора агрегата:
- предотвращение переохлаждения потока;
- снижен вес лопастей и вентилятора;
- повысилась эффективность работы коллектора;
- увеличилась долговечность работы агрегата.
Следовательно, научно-технические мероприятия, направленные на мо-дернизацию агрегата воздушного охлаждения 2АВО-75, компрессорная стан-ция №1 Вуктыльского ЛПУМГ ООО «ТрансгазУхта» являются технологически эффективными, и сам проект может быть принят к исполнению.
ОХЛАЖДЕНИЯ 2АВО-75
3.1 Постановка задачи исследования
Задачи исследования сводятся к сбору и анализу данных по рабате агре-гата воздушного охлаждения 2АВО-75 и конструкции его вентилятора и кол-лектора. При исследовании агрегата воздушного охлаждения 2АВО-75 необ-ходимо произвести:
- произвести условий работы и показателей надежности;
- рассмотреть возможные конструкции вентилятора и коллектора.
3.2 Результаты проведенных исследований
Как известно, удельный объем воздуха в 830 раз больше, а теплоемкость в четыре раза меньше, чем у воды. Однако расход энергии на транспортировку теплоносителя в том и другом случае примерно одинаковы, так как для возду-ха требуется небольшой напор - 13-15 мм вод. ст., а для воды - 10-25 м. Низ-кий коэффициент теплоотдачи от труб к воздуху в АВО компенсируется увели-чением теплоотводящей поверхности путем ее оребрения.
Применение воздушного охлаждения вместо водяного позволяет значи-тельно сократить расход воды (до 80%) и количество стоков. С использовани-ем системы воздушного охлаждения имеется возможность расширять суще-ствующие производственные мощности и создавать новые в районах, удален-ных от источников воды.
Современный нефтехимический комбинат расходует для охлаждения 60-80 тыс. м воды в час. Сооружения водоснабжения и канализации занимают до 12-
15% общей площади завода, а стоимость строительства систем водяного охла-ждения составляет 9-12% от стоимости строительства всего завода. Для соору-жения сетей водопровода и канализации нефтехимического комбината расход труб (стальных, чугунных, керамических и железобетонных) достигает не-скольких десятков тысяч тонн.
При замене водяного охлаждения воздушным площадь застройки значи-тельно уменьшается за счет исключения площадей, занимаемых блоками обо-ротного водоснабжения, и за счет возможности расположения АВО рядом с технологическим оборудованием ила над ним. Площадь, занимаемая АВО, со-ставляет 1,5-2,0% от площади завода.
Установка на месте АВО проста, а объем работ по подготовке площади невелик. При использовании системы воздушного охлаждения объем строи-тельства сетей водопровода и канализации уменьшается в 2-3 раза, что значи-тельно сокращает (до 1-1,5 лет) сроки подготовки площади для сооружения основных производственных установок.
Стоимость АВО (с вентилятором и приводом) в 2-4 раза больше стоимо-сти эквивалентного по площади теплообмена кожухотрубчатого теплообмен-ника. Но поскольку воздушное охлаждение не требует строительства системы оборотного водоснабжения и водоочистки, капиталовложения на систему воз-душного охлаждения оказываются примерно на 40% меньше.
Эксплуатационные расхода на водяное или воздушное охлаждение со-стоят из расходов на обслуживание и ремонт установок (включая систему по-дачи, отработки и слива воды) и затрат на потребляемую вентиляторами или насосами электроэнергию. В аппаратах с водяным охлаждением (особенно в кожухотрубчатых) трубы подвергаются коррозии как со стороны технологи-ческого потока, так и со стороны воды.
Из-за обложений накипи и загрязнений в аппаратах с водяным охлажде-нием снижается коэффициент теплопередачи, в связи с чем требуется часто останавливать аппарата для чистки и ремонта; помимо этого., приходится со-здавать резервные поверхности теплообмена. Борьба с коррозией, чистка и ремонт аппаратов требуют больших эксплуатационных расходов. Благодаря незначительным коррозии и загрязнениям ребристой поверхности труб со сто-роны воздуха при использовании АВО резервные теплообменные поверхности не нужны. Срок службы АВО намного больше, чем у аппаратов водяного охлаждения, а приводы вентиляторов в воздушной атмосфере работают почти без повреждений.
Для АВО основной статьей эксплуатационных расходов является стои-мость потребляемой электроэнергии. Однако АВО большую часть времени го-да имеют резерв мощности силовой установки (когда температура окружаю-щего воздуха ниже расчетной). Благодаря принимаемым мерам для экономии электроэнергии в такие дни среднегодовая потребность вентиляторов в элек-троэнергии ниже, чем потребность насосов, перекачивающих воду.
Ориентировочно, соотношение затрат на обслуживание и ремонт водя-ных и воздушных теплообменников составляет 4:1.
Поскольку воздух почти не оказывает коррозионного воздействия на трубы АВО, для их изготовления могут быть использованы более дешевые ма-териалы, чем для труб кожухотрубчатых теплообменников.
Применение системы воздушного охлаждения исключает возможность попадания воды в технологический поток в позволяет проводить чистку наружной поверхности труб во время работы аппарата.
В случае отсутствия электроэнергии AВО могут работать благодаря есте-ственной тяге с нагрузкой 25-30% от расчетной.
Устанавливаемые на открытых площадках аппараты воздушного охла-ждения подвергаются влиянию резких колебаний температуры, воздействию дождя, града, нагреву солнечными лучами и замерзанию, что усложняет регу-лирование процесса теплообмена.
Считают, что АВО пожароопасны, поскольку в них возможна утечка тех-нологических продуктов и раздувание пламени вентилятором.
К недостаткам АВО относится также большой шум, создаваемый рабо-тающими вентиляторами.
3.3 Рекомендации
На основании проведенного исследования определяем преимущества предлагаемых конструкций вентилятора и коллектора агрегата:
- предотвращение переохлаждения потока;
- снижен вес лопастей и вентилятора;
- повысилась эффективность работы коллектора;
- увеличилась долговечность работы агрегата.
Следовательно, научно-технические мероприятия, направленные на мо-дернизацию агрегата воздушного охлаждения 2АВО-75, компрессорная стан-ция №1 Вуктыльского ЛПУМГ ООО «ТрансгазУхта» являются технологически эффективными, и сам проект может быть принят к исполнению.
Похожие материалы
Исследование работы аппарата воздушного охлаждения 2АВО-75 компрессорного цеха с усовершенствованием конструкции вентилятора и коллектора-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
leha.nakonechnyy.92@mail.ru
: 4 июля 2016
Исследование работы аппарата воздушного охлаждения 2АВО-75 компрессорного цеха с усовершенствованием конструкции вентилятора и коллектора. Задачи исследования сводятся к сбору и анализу данных по рабате агре-гата воздушного охлаждения 2АВО-75 и конструкции его вентилятора и кол-лектора. При исследовании агрегата воздушного охлаждения 2АВО-75 необ-ходимо произвести:
- произвести условий работы и показателей надежности;
- рассмотреть возможные конструкции вентилятора и коллектора.
3.2 Результаты
3485 руб.
СШНУ. Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 11 марта 2016
4.2 Краткое описание оборудования:
1. Станок-качалка 6СК6-2.1-2500 предназначен для преобразования энергии двигателя в механическую энергию колонны насосных штанг, осуществляющих возвратно-поступательное движение.
2. Колонная головка предназначена для обвязки эксплуатационной ко-лонны и колонны НКТ, с обязательной герметизацией межтрубного пространства между ними.
3. Трубная головка необходима для подвески НКТ, герметизации и контроля межтрубного пространства между эксплуатационной колонной и НК
1392 руб.
Модернизация ЭЦН. Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 11 марта 2016
В данном курсовом проекте рассмотрены геологические условия Марковское месторождения, где производится добыча нефти установкой скважинного центробежного электронасоса. Мною было составлено техническое задание на эту установку, описано ее назначение, состав оборудования, описано устройство и работа установки.
Установка обладает относительной простотой конструкцией и является компромиссным решением, заключая в себе большинство преимуществ и лишения множества недостатков. Технические характеристик
1092 руб.
Струйный насос. Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 10 марта 2016
В настоящее время насосная добыча нефти на многих месторождениях России осложнена вследствие негативного воздействия различных факторов: низкого притока из пласта, повышенного газосодержания откачиваемой жидкости, сильного искривления ствола скважин, высоких температур и т.д. Наработка на отказ традиционных для нашей страны видов нефтепромыслового оборудования – установок погружных центробежных и штанговых глубинных насосов в этих условиях существенно снижается. Кроме того, низкодебитные скважин
1392 руб.
Установка подготовки нефти. Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 11 марта 2016
РЕФЕРАТ
Пояснительная записка изложена на 144 страницах, содержит 6 разделов, 32 таблиц, 7 рисунков, использовано 16 источников. Графическая часть выполнена на 9 листах формата А-1.
ТЕХНОЛОГИЧЕСКАЯ УСТАНОВКА, НЕФТЬ, ЕМКОСТЬ, РЕЗЕРВУАР, НАСОС, СТАБИЛИЗАЦИЯ, , ПРОДУКЦИЯ,ОТСТОЙНИК, КОЛОННА СТАБИЛИЗАЦИИ, , ТЕПЛООБМЕННИК,
В литературном обзоре освещено современное состояние установок комплексной подготовки нефти на промыслах, методы обессоливания и обезвоживания нефтей, стаб
1392 руб.
Машины и оборудование для добычи и подготовки нефти и газа
nakonechnyy.1992@list.ru
: 23 марта 2020
Презентация курса МиОдляДиПНиГ-Презентация-Машины и оборудование для добычи и подготовки нефти и газа-Книги-Презентация-Литература-Нефтегазовая промышленность-Руководство по эксплуатации-Паспорт-Каталог-Инструкция-Формуляр-Чертежи-Техническая документация-Курсовая работа-Дипломный проект-Специальность-Буровое оборудование-Нефтегазопромысловое оборудование-Транспорт и хранение нефти и газа-Нефтегазопереработка-Нефть и газ-Добыча полезных ископаемых-Геологоразведка-Машины и оборудование нефтяных и
420 руб.
Штанговращатель ШВЛ-10-Оборудование для добычи и подготовки нефти и газа-Курсовая работа
lelya.nakonechnyy.92@mail.ru
: 15 мая 2023
Штанговращатель ШВЛ-10-Оборудование для добычи и подготовки нефти и газа-Курсовая работа
Штанговращатель ШВЛ-10 (рисунок 2.1) состоит из следующих составных частей: корпуса 6, червячного редуктора 4; нижней траверсы 19; блока зажимов (сухарей) 3; грузовых винтов с распорными втулками 11,10; механизма поворота штанг 15.
Вал червяка установлен в корпус на двух втулках. Для установки храповика на валу имеет квадратное сечение. Это способствует передаче крутящего момента от храповика на червячную п
1310 руб.
Модернизация УЭЦНМ5-1100. Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 15 марта 2016
Установки погружного центробежного электронасоса получило широкое распространение у нас в стране и за рубежом. Установки такого типа используются для эксплуатации различных нефтяных горизонтов в различных климатических условиях. Это объясняется прежде всего универсальностью и наличием широкого спектра регулирования основных характеристик насоса. Так, например, на Альметьевском заводе погружных электронасосов «АлНАС» производятся насосы как с небольшой подачей 10-20 м3/сут, так и со средними зна
1988 руб.
Другие работы
Авиапарк
shoom
: 8 октября 2010
Авиапарк, набор моделей самолетов.
От первых этажерок и самолетов первой и второй мировой войны до современных аэробусов.
Платформа 3д-мах, текстуры в архиве. 29,3Mb
Цифровая обработка сигналов (Калачиков). Билет №2
IT-STUDHELP
: 15 февраля 2022
1. Обобщенная структурная схема системы передачи непрерыв-ных сообщений дискретными сигналами и описание функцио-нальных преобразований (с приведением временных и спек-тральных д-м).
2. Цифровые фильтры: схема, импульсная характеристика, ча-стотный коэффициент передачи, сигнал на выходе.
3. Найти частоту и амплитуду первых пяти гармоник последова-тельности прямоугольных импульсов с амплитудой 3 В, дли-тельностью 250 мкс и периодом 1 мс.
400 руб.
Гражданское право. 6 семестр. Промежуточные и итоговый. Ответы на тест Синергия.
Spero27
: 31 октября 2023
1. Арендодатель, в случае существенного нарушения арендатором сроков внесения арендной платы, вправе потребовать от него досрочного внесения арендной платы, но не более чем за …
• один срок
• два срока подряд
• четыре срока подряд
2. Банк обязан зачислять поступившие на счет клиента денежные средства …
• не позднее трех дней, следующих за днем поступления в банк соответствующего платежного документа, если более короткий срок не предусмотрен договором банковского счета
• не позднее одного дня, с
300 руб.
Контрольная работа по дисциплине: Информатика. Вариант 10
Roma967
: 17 марта 2023
Содержание
Задание на контрольную работу 3
1. Этапы подготовки и решения задач на ЭВМ 4
2. Краткая теория по теме контрольной работы 7
3. Блок-схема разработанной программы 8
4. Программная реализация 9
4.1. Описание отдельных функций 9
4.2. Исходный модуль программы 10
5. Результаты тестирования программы 13
Заключение 15
Список использованной литературы 16
Задание на контрольную работу
Разработать программу, которая должна начать работу с диалога с пользователем: какую операцию с файлом он
800 руб.