Контрольная работа По дисциплине: Математический анализ (1 часть). Вариант 06.

Цена:
100 руб.

Состав работы

material.view.file_icon
material.view.file_icon Контрольная работа.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Задача 1.

Найти пределы
а)  б)  г)

Задача 2.
Найти производные данных функций

Задача 3.
Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.

Задача 4
Дана функция . Найти все её частные производные второго порядка.

Задача 5
Найти неопределенные интегралы
а)    б) 
в)     г)  .

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ
Вид работы: Контрольная работа
Оценка: Отлично
Дата оценки: 14.05.2016
Рецензия:Уважаемый С*
Контрольная работа по дисциплине: математический анализ. Вариант 06
6 вариант 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле и плоскость (P): , которая совместно с координатными пл
User radist24 : 28 ноября 2011
100 руб.
Математический анализ (Часть 1). Вариант 06
1.Найти пределы 2.Найти производные данных функций 3.Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5.Найти неопределенные интегралы
User СибирскийГУТИ : 14 июля 2018
100 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
Дисциплина «Математический анализ». Часть 2. Вариант № 6 1. Вычислить несобственный интеграл или доказать его расходимость 2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями ; ; ; 3. Вычислить криволинейный интеграл по координатам , где - дуга параболы от точки до точки . 4. Найти общее решение дифференциального уравнения первого порядка 5. Решить задачу Коши ,
User rusyyaaaa : 23 июня 2019
Контрольная работа. Математический анализ (Часть 1). Вариант 06
1.Найти пределы 2.Найти производные данных функций 3.Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5.Найти неопределенные интегралы
User DarkInq : 6 ноября 2017
35 руб.
Контрольная работа по дисциплине: «Математический анализ». Часть №1
Задание 1. Найти пределы а) б) в) . Задание 2. Найти производные данных функций
User crest : 13 июля 2017
150 руб.
Контрольная работа. Математический анализ. Вариант 06
1. Вычислить несобственный интеграл или доказать его расходимость. 2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями 3. Вычислить криволинейный интеграл по координатам. , где - дуга параболы от точки О(0,0) до точки В(1,2). 4. Найти общее решение дифференциального уравнения первого порядка. 5. Решить задачу Коши
User DarkInq : 24 ноября 2017
50 руб.
Математический анализ. Контрольная работа. Вариант 06.
1. Исследовать сходимость числового ряда 2. Найти интервал сходимости степенного ряда 3. Вычислить определенный интеграл с точностью до , разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно 4. Разложить данную функцию в ряд Фурье 5. Найти общее решение дифференциального уравнения 6. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям 7.Вычертить область плоскости по данным условиям 8. Найти все особые точки функции, определить
User novosibguti : 15 декабря 2011
100 руб.
Правовые основы гражданской обороны
Глава 1. Общие положения Статья 1. Основные положения Чрезвычайная ситуация - это обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Зона чрезвычайной ситуации - это территория на которой сложилась ЧС. Статья 3. Цели насто
User evelin : 8 марта 2014
15 руб.
Система управления версиями на платформе .NET
Системы управления версиями - класс программных продуктов, нацеленных на решение ряда задач, с которыми повседневно сталкивается каждый программист. С помощью систем управления версиями вы следите за изменениями кода вашего программного продукта в ходе его разработки, и можете управлять различными его состояниями: новая версия, работа над которой идет прямо сейчас; старая версия, которую придется поддерживать еще некоторое время; или же старая версия, интересная только историкам. Ситуация, в к
User evelin : 22 июля 2015
75 руб.
Экзамен . Электроника
1.Работа биполярных и полевых транзисторов с нагрузкой. 2.Изобразите принципиальную схему базового элемента 2И-НЕ семейств ДТЛ. Составьте таблицу истинности. Приведите вид передаточной характеристики. Объясните, какие параметры ЦИМС можно определить с использованием передаточной характеристики. 3.Изобразите принципиальную схему усилительного каскада на полевом транзисторе с p-n переходом и каналом p-типа. Приведите передаточную и выходные характеристики транзисторов и покажите, как опреде
User DEKABR1973 : 2 декабря 2017
110 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 12.9
Определить расход в каждой трубе (рис. 12.19), если их приведенные длины l1 = 5 м; l2 = 3 м, l3 = 3 м, l4 = 6 м, а суммарный расход Q = 9 л/мин. Режим течения ламинарный, а диаметры труб одинаковы.
User Z24 : 18 октября 2025
180 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 12.9
up Наверх