Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №2
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
Дополнительная информация
Работа зачтена без замечаний!
Дата сдачи: июнь 2016 г.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Дата сдачи: июнь 2016 г.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №8
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 8
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(x-2)^(2)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=1-y^(2); x=y^(2); x=2y^(2)+1
3. Вычислить криволинейный интеграл по координатам
y^(2)dx+x^(2)dy,
где L - верхняя половина эллипса x=acost, y=bsint, "пробегаемая" по ходу часовой стрелки.
4. Найти общее решение дифференциального уравнени
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №6
Roma967
: 18 августа 2019
Вариант №6
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: z=0, 4z=y^(2), 2x-y=0, x+y=9
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Lов - дуга параболы y=2*корень(x) от точки O(0,0) до точки B(1,2).
4. Найти общее решение дифференциального уравнения первого порядка x^(2)y'=2xy+3
5. Решить задачу Коши xy'=xe^(y/x)+y, y(1)=0
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
rusyyaaaa
: 23 июня 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Контрольная работа по дисциплине Математический анализ (часть 2). Вариант № 6
Alexbur1971
: 10 мая 2019
Контрольная работа
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
200 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №5
SibGOODy
: 26 августа 2018
Вариант №5
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин).
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; y+z=2; x^(2)+y^(2)=4.
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Loa - дуга параболы y=x^(2)/4 от точки O(0;0) до точки A(2;1).
4. Найти общее решение дифференциального уравнения первого порядка xy'=y ln (y/x)
5. Решить задачу Коши y'=-2y+e^(3x), y(0)=1.
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №1
Учеба "Под ключ"
: 25 июля 2017
Вариант №1
1. Вычислить несобственный интеграл или доказать его расходимость (см.скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=9-y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам (см. скрин)
где Lab - отрезок прямой, соединяющий точки A(2;-2) и B(-2;2).
4. Найти общее решение дифференциального уравнения первого порядка (см скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Другие работы
Проект крана башенного 40т
ilyaES
: 9 сентября 2010
Введение…………………………………………………………………………4
1 Анализ существующих конструкции крана и выбор оптимального варианта ……………………………………………………………………..……………....5
1.1Механизм подъема гру-за……………………………………………..5
1.2 Механизм передвижения кра-на………………………………….….6
1.3 Механизм поворота кра-на……………………………………….…..7
2 Расчет механизма подъёма гру-за………………………………………….…8
2.1Расчет и выбор кана-та………………………………………………..8
2.2 Расчет грузового бараба-на……………………………………….….8
2.3 Расчет мощности и выбор электродвигателя……………………
Электротехника, электроника и схемотехника (часть №1)
Teva
: 9 декабря 2018
Билет № 14
для зачета по дисциплине "Электротехника и электроника".
1. Электрические фильтры (основные понятия, классификация).
2. Определить импульсную характеристику цепи.
R=2 кОм,
C=0.05 мкФ.
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Электротехника, электроника и схемотехника (часть 1)
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 30.11.2018
70 руб.
Золотое сечение в природе и искусстве
Elfa254
: 9 августа 2013
Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем отношении.
И. Кеплер
Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из
5 руб.
Панкратов Г.П. Сборник задач по теплотехнике Задача 4.17
Z24
: 24 сентября 2025
Определить эффективный к.п.д. ГТУ, если степень повышения давления в компрессоре λ = 3,9, температура всасываемого в компрессор воздуха t3 = 22ºС, температура газа на выходе из камеры сгорания t1 = 717ºС, относительный внутренний к.п.д. турбины ηoi = 0,89, внутренний к.п.д. компрессора ηк = 0,86, к.п.д. камеры сгорания ηк.с = 0,98, механический к.п.д. ηмГТУ = 0,88 и показатель адиабаты k = 1,4.
Ответ: ηеГТУ = 0,167.
120 руб.