Лабораторная работа №1-5 по дисциплине: Вычислительная математика. Вариант №5
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1
Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в
точках
по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,29).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2
Решение систем линейных уравнений.
Задание
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. Система уравнений:
N – последняя цифра пароля.
Лабораторная работа No3
Тема работы: Решение нелинейных уравнений.
Задание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |xn+1 - xn|, ( – заданная точность), при этом . Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 5:
Лабораторная работа No4
Численное дифференцирование.
Задание
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c–h, c+21h].
2. По составленной таблице вычисляет значения производной в точках .
3. Выводит значения xi (i = 0,1, 20), приближенные и точные значения производной в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной .
Лабораторная работа No5
Одномерная оптимизация.
Задание
Написать программу для нахождения максимального значения функции
на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом .
N – последняя цифра пароля.
Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в
точках
по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,29).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2
Решение систем линейных уравнений.
Задание
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. Система уравнений:
N – последняя цифра пароля.
Лабораторная работа No3
Тема работы: Решение нелинейных уравнений.
Задание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |xn+1 - xn|, ( – заданная точность), при этом . Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 5:
Лабораторная работа No4
Численное дифференцирование.
Задание
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c–h, c+21h].
2. По составленной таблице вычисляет значения производной в точках .
3. Выводит значения xi (i = 0,1, 20), приближенные и точные значения производной в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной .
Лабораторная работа No5
Одномерная оптимизация.
Задание
Написать программу для нахождения максимального значения функции
на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом .
N – последняя цифра пароля.
Дополнительная информация
Все работы сданы без замечаний.
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1,2,3,4,5
Оценка:Зачет
Дата оценки: 17.10.2016
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1,2,3,4,5
Оценка:Зачет
Дата оценки: 17.10.2016
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Похожие материалы
Лабораторные работы №№1-5 по дисциплине вычислительная математика
Юлия102
: 1 марта 2017
Вариант 1.
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количес
300 руб.
Лабораторные работы №№1-5 По дисциплине: Вычислительная математика
nmaksim91
: 9 февраля 2015
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фун
390 руб.
Лабораторная работа №1 по дисциплине: Вычислительная математика. Вариант №5
IT-STUDHELP
: 25 октября 2016
Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции , по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значен
48 руб.
Лабораторные работы №1-5 по дисциплине Вычислительная математика. Вариант №1.
fominovich
: 19 июня 2016
1) Лабораторная работа №1. Интерполяция
2) Лабораторная работа №2. Решение систем линейных уравнений.
3) Лабораторная работа №3. Решение нелинейных уравнений.
4) Лабораторная работа №4. Численное дифференцирование.
5) Лабораторная работа №5. Одномерная оптимизация.
Во всех работах 1-ый вариант.
500 руб.
Вычислительная математика. Лабораторная работа №1. Вариант №5
sibguter
: 5 июня 2018
Тема: Интерполяция
Задание
Известно, что функция f(x) удовлетворяет условию |f^'' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
С помощью линейной интерполяции вычисляет значения фун
49 руб.
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №6
Учеба "Под ключ"
: 9 сентября 2017
Лабораторная работа No1
Интерполяция
Задание к работе
Известно, что функция f(x) удовлетворяет условию |f``(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интер
800 руб.
Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант №9.
teacher-sib
: 30 ноября 2016
Лабораторная работа No 1
Интерполяция.
Задание: Известно, что функция f(x) удовлетворяет условию |f"(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции
130 руб.
Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант 05.
freelancer
: 16 августа 2016
Лабораторная работа No1
Тема работы: Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вы
300 руб.
Другие работы
Соціально-психологічна компетентність дітей дошкільного віку
evelin
: 18 октября 2013
Об‘єкт дослідження: соціально-психологічна компетентність дітей дошкільного віку.
Предмет дослідження: активні засоби формування соціально-психологічної компетентності.
Мета дослідження: теоретично обґрунтувати та експериментально перевірити ефективність використання активних засобів у формуванні соціально-психологічної компетентності дітей дошкільного віку.
Завдання дослідження:
1. На основі аналізу наукових джерел з теми дослідження розкрити сутність понять "соціалізація", "соціально-психо
Реконструкция исторического центра
elementpio
: 26 августа 2013
Реализация Генерального плана Москвы в историческом центре включает в себя более детальную проектную разработку как на территориальном, так и на отраслевых уровнях. В этом направлении в 1999—2001 годы выполнены или находятся в стадии выполнения следующие градостроительные разработки:
— градостроительный план развития территории ЦАО (утвержден Правительством Москвы);
— градостроительные планы развития территории районов ЦАО (по пяти районам выполнены, шестой — в стадии выполнения);
— проекты
5 руб.
Курсовая работа по предмету: "Радиотехника и радиосвязь". Расчет передатчика для сетей синхронного вещания. Вариант № 5
xtrail
: 11 марта 2013
(5-й вариант)
Оглавление
1. Исходные данные 3
2. Разработка структурной схемы передатчика 4
3. Расчет схемы передатчика 5
3.1 Расчет лампового усилителя амплитудно-модулированных колебаний 5
3.2. В телефонной точке 6
3.3. Выбор элементов 6
4. Расчет Выходной Колебательной Системы и КНИ 7
5. Расчет транзисторного каскада с коллекторной модуляцией 8
5.1. В пиковой точке 8
6. Список использованной литературы 12
200 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 4.1 Вариант б
Z24
: 6 октября 2025
Из магистрального трубопровода бензин по трубе диаметром d и длиной l подается в бензохранилище. Уровень бензина в бензохранилище ниже оси трубы на величину h (рис. 4.1).
Определить показание манометра М (рман) в начале трубопровода для обеспечения пропускной способности Q. На трубе установлена задвижка Лудло со степенью открытия a/d. Принять шероховатость трубы Δ. Плотность бензина ρбенз=750 кг/м³; коэффициент кинематической вязкости бензина νбенз=0,85·10-6 м²/c.
180 руб.