Теория вероятностей и математическая статистика Вариант №3, третий семестр

Состав работы

material.view.file_icon BA41AD7C-C8B4-4B33-AA28-8FDB929866AC.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Вариант No 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?

2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?

3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие наступит: а) 20 раз; б) менее 20 раз.

4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):

Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.

5. Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 1 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (4;8).

Дополнительная информация

зачет.
«Теория вероятностей и математическая статистика». Вариант №3
Задание 1. Комбинаторика Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия. Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной с
User LiVolk : 20 января 2022
200 руб.
«Теория вероятностей и математическая статистика». Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Задача 1 Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны? Задача 2 В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Задача 3 В типографии имеется печатных машин. Для каждой м
User IT-STUDHELP : 18 ноября 2021
500 руб.
promo
Теория вероятностей и математическая статистика. Вариант №3
Вариант No 3 1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны? 2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар? 3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
User 89370803526 : 26 июня 2020
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Задание 1. Комбинаторика Вариант 3. Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы Вариант 3. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01 для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия. Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое
User SibGUTI2 : 7 апреля 2020
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Вариант №03 Задание 1. Комбинаторика Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
User CrashOv : 20 февраля 2020
350 руб.
Теория вероятностей и математическая статистика. Вариант №3
Теория вероятностей и математическая статистика. Вариант №3
Часть I: Теория вероятностей и математическая статистика Задача 1. В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями): а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной? б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной? в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
User Dreyko : 19 февраля 2017
400 руб.
Теория вероятностей и математическая статистика. Вариант №3
I. Задачи 521-530. Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель. II. Задачи No 541-550. Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. III. Зада
User СибирскийГУТИ : 18 августа 2013
50 руб.
Теория вероятности и математическая статистика. Вариант №3
I. Задачи 521-530. Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель. II. Задачи No 541-550. Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. III. Задачи
User тантал : 18 августа 2013
70 руб.
Зачетная работа по дисциплине: Деловая риторика. Билет №10
Уважаемые студенты, в качестве зачетного задания вам предложен анализ способов взаимодействия делового человека с партнерами (искусство словесной атаки) – см. лекцию 6. Выбор персоналии (делового человека), для анализа, - индивидуальный: это может быть политик, комментатор, медиаперсона, герой фильма, художественного произведения и т.д. В титульном листе нужно обязательно указать номер варианта и его название. Аналитическую часть работы выделите цветом, следуйте образцу. В данной работе выполн
User SibGOODy : 7 августа 2018
200 руб.
promo
Экзамен по дисциплине: «Криптографические методы защиты информации». Билет №3
Экзамен По дисциплине: «Криптографические методы защиты информации» Билет №3 1. В протоколе шифра Эль-Гамаля сообщение пересылается а) два раза б) три раза в) один раз г) четыре раза 2. Используя теорему Ферма, найдите правильный ответ для выражения 512(mod 13): а) 5 б) 1 в) 3 г) 2 3. При построении электронной подписи используется а) генератор случайных чисел б) хеш-функция в) блоковый шифр 4. Укажите правильный порядок ответов в правом столбике: RC4 блоковый шифр ГОСТ 28147
User dralex : 4 мая 2020
150 руб.
Методы, техника и технологии социологического исследования
Задание 1. Измерение социальных признаков. Шкалирование. 2. Дайте определение следующих понятий: "пробное исследование" (пилотаж), "гнездовая выборка", "фокус-группа", "флюсовая выборка". 3.Разработать план свободного интервью для изучения степени удовлетворенности трудом работников Вашего предприятия. Социологическое измерение различных сторон и свойств социальных явлений связано с использованием определенных факторов, которые могли бы служить их количественной (числовой) характеристикой. В
User larin1986 : 20 марта 2012
up Наверх