Теория вероятностей и математическая статистика Вариант №3, третий семестр
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант No 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие наступит: а) 20 раз; б) менее 20 раз.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.
5. Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 1 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (4;8).
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие наступит: а) 20 раз; б) менее 20 раз.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.
5. Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 1 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (4;8).
Дополнительная информация
зачет.
Похожие материалы
«Теория вероятностей и математическая статистика». Вариант №3
LiVolk
: 20 января 2022
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова
ФУРАЖ?
Задание 2. Основные теоремы
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной с
200 руб.
Теория вероятностей и математическая статистика. Вариант №3
IT-STUDHELP
: 18 ноября 2021
Задача 1
Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?
Задача 2
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
В типографии имеется печатных машин. Для каждой м
500 руб.
Теория вероятностей и математическая статистика. Вариант №3
89370803526
: 26 июня 2020
Вариант No 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
SibGUTI2
: 7 апреля 2020
Задание 1. Комбинаторика
Вариант 3. Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы
Вариант 3. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01 для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
CrashOv
: 20 февраля 2020
Вариант №03
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы.
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
350 руб.
Теория вероятностей и математическая статистика. Вариант №3
Dreyko
: 19 февраля 2017
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
400 руб.
Теория вероятностей и математическая статистика. Вариант №3
СибирскийГУТИ
: 18 августа 2013
I. Задачи 521-530.
Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель.
II. Задачи No 541-550.
Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины.
III. Зада
50 руб.
Теория вероятности и математическая статистика. Вариант №3
тантал
: 18 августа 2013
I. Задачи 521-530.
Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель.
II. Задачи No 541-550.
Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины.
III. Задачи
70 руб.
Другие работы
Лабораторная работа №3 «Средства рубрикации и форматирования документа» По дисциплине: Компьютерные технологии в науке и производстве
troy777
: 11 декабря 2019
1. Создайте tex-документ и отформатируйте текст из файла task.doc в соответствии со следующими правилами:
Выставить параметры страницы: слева – 3 см, справа - 1.5 см, сверху и снизу - 2 см.
Оформление основного текста:
• абзацный отступ - 1,25 см;
• первый абзац раздела не имеет абзацного отступа;
• маркированные списки помечаются маркером “*“;
• интервал между абзацами - 6pt;
• выравнивание абзаца - по левому краю.
Оформление заголовка раздела:
• выравнивание заголовка раздела - по лево
150 руб.
Информатика..Лабораторная работа №5, вариант №3
forex
: 16 января 2017
Задание
Дана действительная квадратная матрица А размера n n. Вычислить количество нулевых, отрицательных и положительных элементов матрицы отдельно.
50 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 2.37
Z24
: 14 ноября 2025
Абсолютное давление в трубопроводе В рВ=1,5·105 Па. Определить избыточное давление в трубопроводе С, если оба трубопровода заполнены водой, а показания дифференциального ртутного манометра h=20 см (ρрт=13600 кг/м³).
120 руб.
Лабораторная работа № 2 по дисциплине "Представление графической информации"
Greenberg
: 7 мая 2012
Задание
Преобразовать BMP файл, создав вокруг него pамку из пикселей случайного цвета.
Шиpина рамки - 15 пикселей (Работа с pастpовыми данными).
Требования к оформлению отчета
Необходимо представить следующее:
1. Текст задания
2. Текст программы (файл с расширением .сpp)
3. Все файлы, относящиеся к проекту, в том числе EXE-файл
79 руб.