Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
Дополнительная информация
Зачет без замечаний!
Дата сдачи: ноябрь 2016 г.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Дата сдачи: ноябрь 2016 г.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Похожие материалы
Контрольная работа по дисциплине. Математический анализ (часть 2). Вариант №4
lfesta
: 21 января 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
150 руб.
Вариант №4. Математический анализ (Часть 2)
MK
: 18 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3.Вычислить криволинейный интеграл по координатам
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
150 руб.
Дисциплина «Математический анализ». Часть 2-я. Вариант № 4
lllog
: 25 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где – дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
200 руб.
Контрольная работа По дисциплине: Математический анализ, вариант №4
ннааттаа
: 23 августа 2017
Задание 1. Найти пределы функций
Задание 2. Найти значение производной данной функции в точке х=0;
Задание 3. Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4. Найти неопределенные интервалы:
Задание 5. Вычислить площадь области, заключенных между линиями;
300 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Елена22
: 5 мая 2016
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
f(x)=4x/4+x^(2)
Задача 2. Найти неопределенные интегралы (см. скрин):
Задача 3. Вычислить площади областей, заключённых между линиями:
y=x^(2)-2; y=2x-2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Задание 1 .Найти пределы функций:
Задание 2 .Найти значение производной данной функции в точке х=0;
Задание 3.Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4 .Найти неопределенные интервалы:
Задание 5. Вычислить площадь области , заключенных между линиями;
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №4
Arsikk
: 2 апреля 2014
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (2сем.)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 27.01.2014
Рецензия:Уважаемый Муравьев Павел Евгеньевич, вы справились со всеми заданиями "Зачёт"
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченн
100 руб.
Контрольная работа по дисциплине: «Математический анализ».Вариант №4
tehnikuvc
: 16 мая 2013
Вариант №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
80 руб.
Другие работы
Наличный и безналичный денежный оборот в России
Elfa254
: 26 октября 2013
Содержание
Введение
1. Теоретические основы организации налично-денежного и безналичного оборота
Сущность и принципы организации налично-денежного оборота
Понятие и формы безналичного денежного оборота
Государственное регулирование наличного и безналичного денежного оборота в России
2. Особенности организации наличного и безналичного оборота в России
Динамика и структура налично-денежного оборота России
Современное состояние и структура безналичного оборота России
3. Проблемы организации и ре
10 руб.
Метрология, стандартизация и сертификация
Tatna
: 14 июня 2020
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) п
400 руб.
Метрология стандартизация и сертификация. Контрольная работа. Вариант №4
MN
: 11 марта 2015
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) погр
250 руб.
Лабораторная работа № 4 по дисциплине: Волоконно-оптические системы передачи. «Исследование характеристик эрбиевого волоконного усилителя (EDFA)»
den245
: 16 апреля 2012
Цель работы
Исследовать характеристики эрбиевого волоконного усилителя (EDFA)
Задание студенту
1. Изучить теоретический материал и ответить на контрольный тест.
2. Выполнить лабораторную работу по исследованию характеристик волоконного усилителя.
3. Оформить отчет и ответить на контрольные вопросы.
Методические указания к выполнению лабораторной работы
Требования к отчету
Отчет должен содержать:
1. Название лабораторной работы
2. Цель работы
3. Схему исследования
4. Результаты исследования (все
120 руб.