Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант №9.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 1
Интерполяция.
Задание: Известно, что функция f(x) удовлетворяет условию |f"(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках 〖 x〗_i=c+ih+(imod 4+1)/5 h(i=0,1,2,...,29) по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,...29).
Для построения таблицы взять функцию f(x)=2c^3 sin(x/c),c=N+1
N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No 2
Решение систем линейных уравнений.
Задание:
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля.
Лабораторная работа No 3
Решение нелинейных уравнений.
Задание:
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (ε – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 9:
Лабораторная работа No 4
Численное дифференцирование.
Задание:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1, 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No 5
Одномерная оптимизация.
Задание:
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (ε – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом, ,
N – последняя цифра пароля.
Интерполяция.
Задание: Известно, что функция f(x) удовлетворяет условию |f"(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках 〖 x〗_i=c+ih+(imod 4+1)/5 h(i=0,1,2,...,29) по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,...29).
Для построения таблицы взять функцию f(x)=2c^3 sin(x/c),c=N+1
N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No 2
Решение систем линейных уравнений.
Задание:
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля.
Лабораторная работа No 3
Решение нелинейных уравнений.
Задание:
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (ε – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 9:
Лабораторная работа No 4
Численное дифференцирование.
Задание:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1, 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No 5
Одномерная оптимизация.
Задание:
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (ε – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом, ,
N – последняя цифра пароля.
Дополнительная информация
Сдача - 2016 год
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 5
Оценка: Зачет
Дата оценки: 25.11.2016
Рецензия:Уважаемый С*
Галкина Марина Юрьевна
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 5
Оценка: Зачет
Дата оценки: 25.11.2016
Рецензия:Уважаемый С*
Галкина Марина Юрьевна
Похожие материалы
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №9.
moomy
: 3 июня 2016
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)''|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет
200 руб.
Лабораторные работы №№1-5 по дисциплине вычислительная математика
Юлия102
: 1 марта 2017
Вариант 1.
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количес
300 руб.
Лабораторные работы №№1-5 По дисциплине: Вычислительная математика
nmaksim91
: 9 февраля 2015
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фун
390 руб.
Вычислительная математика. Лабораторная работа № 1. Вариант № 9
TechUser
: 24 октября 2013
Тема: ИНТЕРПОЛЯЦИЯ
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в то
50 руб.
Лабораторная работа №1 по дисциплине: Вычислительная математика. Вариант 9
Учеба "Под ключ"
: 24 декабря 2024
Лабораторная работа №1
«Линейная интерполяция»
Задание на лабораторную работу
1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
350 руб.
Вычислительная математика. Лабораторные работы №№1-5. Вариант №9
nik200511
: 19 сентября 2017
Лабораторная работа No1.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точк
79 руб.
Вычислительная математика. Лабораторные работы №1-5. Вариант 9.
growlist
: 12 апреля 2017
Лабораторная работа No1:
Задание 1.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функц
70 руб.
Вычислительная математика. Лабораторная работа №1. Интерполяция. Вариант №9
nik200511
: 29 ноября 2013
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений фун
25 руб.
Другие работы
Контрольная работа по дисциплине Теория вероятностей и математическая статистика. Вариант 6.
Grechikhin
: 30 ноября 2022
1. Сколько 7-ми буквенных слов можно составить из букв слова ШЕРШЕНЬ?
2. Для передачи сообщения используются сигналы типа 0 и 1. Сигналы 0 составляют 60%, а сигналы 1 – остальные 40%. Вероятность искажения сигнала 0 равна 0,0001, а вероятность искажения сигнала 1 равна 0,0002. Найти вероятность искажения наугад взятого сигнала.
3. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядом распределения
ꜫ - 2 - 1 1 3
p 0.1 0.5 0.3
300 руб.
Полугодовая отчетность в бухгалтерском учете
Lokard
: 29 августа 2013
В первом полугодии чиновники выпустили немало разъяснений, которые повлияют на составление отчетности. Надо ли ими руководствоваться? Сами чиновники считают, что следовать письмам не нужно, так как они не являются нормативными документами. Такую позицию Минфин России высказал еще в начале года (об этом мы писали в "Главбухе" N 6, 2006 на с. 19 - 20). Но понятно, что на практике проверяющие отстаивают позиции, изложенные именно в письмах. Поэтому рецепт такой. Если письма содержат разъяснения в п
5 руб.
Гидравлика Севмашвтуз 2016 Задача 33 Вариант 1
Z24
: 31 октября 2025
Определить диаметр d горизонтального стального трубопровода длиной L=20 м, необходимый для пропуска по нему воды в количестве Q, если располагаемый напор равен H. Эквивалентная шероховатость стенок трубы kэ=0,15 мм.
Указание. Для ряда значений d и заданного Q определяется ряд значений потребного напора H. Затем строится график Нпот=f(d) и по заданному H определяется d.
220 руб.
Передача даних, сигналів звукового мовлення, частотних груп і телевізійних сигналів по цифрових каналах
Slolka
: 14 сентября 2013
1. Методи передачі даних по цифровому каналу
Існують два методи передачі низькошвидкісних даних по цифровому каналу: метод простого накладення і метод кодування фронтів.
Метод накладення передбачає стробування інформаційних імпульсів послідовністю більш коротких імпульсів, у результаті чого кожен інформаційний імпульс перетворюється в пачку коротких імпульсів (рис. 1). Зазначене перетворення легко реалізується за допомогою схеми збігу, на один вхід якої подаються інформаційні, а на інший – стр
5 руб.