Алгебра и Геометрия. 9-й вариант. 1-й семестр.(работа проверенная)
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Новосибирск 2011 г.
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Дополнительная информация
работа проверенная
Похожие материалы
Алгебра и геометрия, 1-й семестр, 8-й вариант
Internazionale
: 1 марта 2018
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы a ⃗_1={2;3;-1}, a ⃗_2={-4;-1;-4}, a ⃗_3={1;2;3}, 3. Даны векторы a ⃗_1={2;3;-1}, a ⃗_2={-4;-1;-4}, a ⃗_3={1;2;3}
4. Даны координаты вершин треугольника A(5,4); B(-1,2); C(2,7)
5. Даны координаты вершин пирамиды А(1;-2;-1), B(0;2;-4), C(5;-1;3), D(5;-4;5)
Работа сдана в 2018 году на отлично!
400 руб.
Алгебра и Геометрия. 7-й вариант. 1-й семестр
Anton16
: 7 января 2017
контрольная зачтена. ошибки все исправлены
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высо
100 руб.
Алгебра и Геометрия. 17-й вариант. 1-й семестр
zagovor
: 30 ноября 2016
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
150 руб.
Алгебра и геометрия. 1-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин п
150 руб.
Алгебра и геометрия. 1-й семестр. 10-й вариант
NataFka
: 12 октября 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
Работа зачтена
100 руб.
Алгебра и Геометрия. 1-й семестр, вариант №3
Uiktor
: 3 ноября 2015
3. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны к
119 руб.
Алгебра и геометрия, 1-й семестр. Вариант 9
0491
: 10 сентября 2014
Задача 1
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2
Даны координаты вершин пирамиды А1А2А3А4. Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) площадь грани А1А2А3;
4) уравнение плоскости А1А2А3 ;
5) объем пирамиды А1А2А3А4.
А1(1, 8, 2), А2(5, 2, 6), А3(5, 7, 4), А4(4, 10, 9)
200 руб.
Алгебра и геометрия. 1-й семестр. Вариант №5
Efimenko250793
: 11 октября 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1(4; 2; 5), А2 (0; 7; 2), А3 (0; 2; 7), А4 (1; 5; 0)
50 руб.
Другие работы
Техническая термодинамика и теплотехника УГНТУ Задача 8 Вариант 14
Z24
: 20 декабря 2025
Водяной пар с начальным давлением р1=5 МПа и степенью сухости х1=0,95 поступает в пароперегреватель, где его температура повышается на Δt; после перегревателя пар изоэнтропно (адиабатно) расширяется в турбине до давления p2. Пользуясь h-s — диаграммой для водяного пара (приложение Д, рисунок Д1), определить:
— количество теплоты (на 1 кг пара), подведенной к нему в пароперегревателе;
— работу цикла Ренкина и степень сухости пара х2 в конце расширения;
— термический КПД цикла;
— работ
180 руб.
Вычислительная математика. Лабораторная работа №5. 3-й семестр. 8-й вариант
Nikolay80
: 24 января 2015
Вычислительная математика
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, ,
N – последняя цифра пароля.
70 руб.
2015Г. Экзаменационная работа. БИЛЕТ №12
geragera
: 26 октября 2015
1. Распределение огибающей и фаз узкополосного гауссовского случайного процесса с нулевым математическим ожиданием.
2. Прием дискретных сигналов методом однократного
отсчета. Оценка вероятности ошибки типа 1/0 и 0/1.
50 руб.
Статистика (2 вопроса и 2 задачи)
СибирскийГУТИ
: 4 марта 2014
Содержание
1. Сущность средних величин и правила их применения
2. Множественная корреляция
Задача 1
Имеются данные, характеризующие динамику парка грузовых автомобилей автотранспортного предприятия за 5 лет:
Годы 1994 1995 1996 1997 1998
Среднесписочное число а/м 200 180 120 130 110
Изобразите приведенные в таблице данные при помощи столбиковой линейной диаграммы.
Задача 2
Выявить основную тенденцию по объемам перевозок способом укрупнения интервалов, рассчитав переменные средние. За укр
50 руб.